首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Let (X, μ) and (Y, ν) be standard measure spaces. A function \({\varphi\in L^\infty(X\times Y,\mu\times\nu)}\) is called a (measurable) Schur multiplier if the map S φ , defined on the space of Hilbert-Schmidt operators from L 2(X, μ) to L 2(Y, ν) by multiplying their integral kernels by φ, is bounded in the operator norm. The paper studies measurable functions φ for which S φ is closable in the norm topology or in the weak* topology. We obtain a characterisation of w*-closable multipliers and relate the question about norm closability to the theory of operator synthesis. We also study multipliers of two special types: if φ is of Toeplitz type, that is, if φ(x, y) = f(x ? y), \({x,y\in G}\), where G is a locally compact abelian group, then the closability of φ is related to the local inclusion of f in the Fourier algebra A(G) of G. If φ is a divided difference, that is, a function of the form (f(x) ? f(y))/(x ? y), then its closability is related to the “operator smoothness” of the function f. A number of examples of non-closable, norm closable and w*-closable multipliers are presented.  相似文献   

2.
We investigate equations of the form D t u = Δu + ξ? u for an unknown function u(t, x), t ∈ ?, xX, where D t u = a 0(u, t) + Σ k=1 r a k (t, u)? t k u, Δ is the Laplace-Beltrami operator on a Riemannian manifold X, and ξ is a smooth vector field on X. More exactly, we study morphisms from this equation within the category PDE of partial differential equations, which was introduced by the author earlier. We restrict ourselves to morphisms of a special form—the so-called geometric morphisms, which are given by maps of X to other smooth manifolds (of the same or smaller dimension). It is shown that a map f: XY defines a morphism from the equation D t u = Δu + ξ? u if and only if, for some vector field Ξ and a metric on Y, the equality (Δ + ξ?)f*v = f*(Δ + Ξ?)v holds for any smooth function v: Y → ?. In this case, the quotient equation is D t v = Δv + Ξ?v for an unknown function v(t, y), yY. It is also shown that, if a map f: XY is a locally trivial bundle, then f defines a morphism from the equation D t u = Δu if and only if fibers of f are parallel and, for any path γ on Y, the expansion factor of a fiber translated along the horizontal lift γ to X depends on γ only.  相似文献   

3.
In this paper, Let X, Y be two real Banach spaces and ε ≥ 0. A mapping f: XY is said to be a standard ε-isometry provided f(0) = 0 and
$$\parallel f\left( x \right) - f\left( y \right)\parallel - \parallel x - y\parallel | \leqslant \varepsilon $$
(1)
for all x, yX. If ε = 0, then it is simply called a standard isometry. We prove a sufficient and necessary condition for which {f(xn)}n≥1 is a basic sequence of Y equivalent to {xn}n≥1 whenever {xn}n≥1 is a basic sequence in X and f: XY is a nonlinear standard isometry. As a corollary we obtain the stability of basic sequences under the perturbation by nonlinear and non-surjective standard ε-isometries.
  相似文献   

4.
We prove generalized Hyers-Ulam–Rassias stability of the cubic functional equation f(kx+y)+f(kx?y)=k[f(x+y)+f(x?y)]+2(k 3?k)f(x) for all \(k\in \Bbb{N}\) and the quartic functional equation f(kx+y)+f(kx?y)=k 2[f(x+y)+f(x?y)]+2k 2(k 2?1)f(x)?2(k 2?1)f(y) for all \(k\in \Bbb{N}\) in non-Archimedean normed spaces.  相似文献   

5.
Let X and Y be completely regular spaces and E and F be Hausdorff topological vector spaces. We call a linear map T from a subspace of C(X, E) into C(Y, F) a Banach–Stone map if it has the form T f (y) =  S y (f (h(y))) for a family of linear operators S y : EF, \({y \in Y}\) , and a function h: YX. In this paper, we consider maps having the property:
$\bigcap^{k}_{i=1}Z(f_{i}) \neq\emptyset \iff \bigcap^{k}_{i=1}Z(Tf_{i})\neq\emptyset , \quad({\rm Z}) $
where Z(f) =  {f =  0}. We characterize linear bijections with property (Z) between spaces of continuous functions, respectively, spaces of differentiable functions (including C ), as Banach–Stone maps. In particular, we confirm a conjecture of Ercan and Önal: Suppose that X and Y are realcompact spaces and E and F are Hausdorff topological vector lattices (respectively, C *-algebras). Let T: C(X, E) → C(Y, F) be a vector lattice isomorphism (respectively, *-algebra isomorphism) such that
$ Z(f) \neq\emptyset\iff Z(Tf) \neq\emptyset. $
Then X is homeomorphic to Y and E is lattice isomorphic (respectively, C *-isomorphic) to F. Some results concerning the continuity of T are also obtained.
  相似文献   

6.
The paper studies the differential properties of functions of the form
$g(x) = \mathop {\max }\limits_{y \in Y} f(x,y),$
where xX (X is an open convex set from ? m ) and yY (Y is a compact from ? n ). Apart from the conventional smoothness conditions imposed on f(x, y), the condition of the concavity of g(x) on X is also imposed.
The differentiability of function g(x) on X is proved.The results of the study facilitate the derivation of the conditions ensuring the sufficiency of Pontryagin’s maximum principle.  相似文献   

7.
We consider quadratic functions f that satisfy the additional equation y2 f(x) =  x2 f(y) for the pairs \({ (x,y) \in \mathbb{R}^2}\) that fulfill the condition P(x, y) =  0 for some fixed polynomial P of two variables. If P(x, y) =  axbyc with \({ a , b , c \in \mathbb{R}}\) and \({(a^2 + b^2)c \neq 0}\) or P(x,y) =  x n ? y with a natural number \({n \geq 2}\), we prove that f(x) =  f(1) x2 for all \({x \in \mathbb{R}}\). Some related problems, admitting quadratic functions generated by derivations, are considered as well.  相似文献   

8.
The recent articles of Arutyunov and Greshnov extend the Banach and Hadler Fixed-Point Theorems and the Arutyunov Coincidence-Point Theorem to the mappings of (q1, q2)-quasimetric spaces. This article addresses similar questions for f-quasimetric spaces.Given a function f: R +2 → R+ with f(r1, r2) → 0 as (r1, r2) → (0, 0), an f-quasimetric space is a nonempty set X with a possibly asymmetric distance function ρ: X2 → R+ satisfying the f-triangle inequality: ρ(x, z) ≤ f(ρ(x, y), ρ(y, z)) for x, y, zX. We extend the Banach Contraction Mapping Principle, as well as Krasnoselskii’s and Browder’s Theorems on generalized contractions, to mappings of f-quasimetric spaces.  相似文献   

9.
Let Γ=(X,R) be a distance-regular graph of diameter d. A parallelogram of length i is a 4-tuple xyzw consisting of vertices of Γ such that ?(x,y)=?(z,w)=1, ?(x,z)=i, and ?(x,w)=?(y,w)=?(y,z)=i?1. A subset Y of X is said to be a completely regular code if the numbers
$\pi_{i,j}=|\Gamma_{j}(x)\cap Y|\quad (i,j\in \{0,1,\ldots,d\})$
depend only on i=?(x,Y) and j. A subset Y of X is said to be strongly closed if
$\{x\mid \partial(u,x)\leq \partial(u,v),\partial(v,x)=1\}\subset Y,\mbox{ whenever }u,v\in Y.$
Hamming graphs and dual polar graphs have strongly closed completely regular codes. In this paper, we study parallelogram-free distance-regular graphs having strongly closed completely regular codes. Let Γ be a parallelogram-free distance-regular graph of diameter d≥4 such that every strongly closed subgraph of diameter two is completely regular. We show that Γ has a strongly closed subgraph of diameter d?1 isomorphic to a Hamming graph or a dual polar graph. Moreover if the covering radius of the strongly closed subgraph of diameter two is d?2, Γ itself is isomorphic to a Hamming graph or a dual polar graph. We also give an algebraic characterization of the case when the covering radius is d?2.
  相似文献   

10.
In this paper, we essentially compute the set of x,y>0 such that the mapping \(z\longmapsto(1-r+re^{z})^{x}(\frac{\lambda}{\lambda-z})^{y}\) is a Laplace transform. If X and Y are two independent random variables which have respectively Bernoulli and Gamma distributions, we denote by μ the distribution of X+Y. The above problem is equivalent to finding the set of x>0 such that μ *x exists.  相似文献   

11.
Let d ? 3 be an integer, and set r = 2d?1 + 1 for 3 ? d ? 4, \(\tfrac{{17}}{{32}} \cdot 2^d + 1\) for 5 ? d ? 6, r = d2+d+1 for 7 ? d ? 8, and r = d2+d+2 for d ? 9, respectively. Suppose that Φ i (x, y) ∈ ?[x, y] (1 ? i ? r) are homogeneous and nondegenerate binary forms of degree d. Suppose further that λ1, λ2,..., λ r are nonzero real numbers with λ12 irrational, and λ1Φ1(x1, y1) + λ2Φ2(x2, y2) + · · · + λ r Φ r (x r , y r ) is indefinite. Then for any given real η and σ with 0 < σ < 22?d, it is proved that the inequality
$$\left| {\sum\limits_{i = 1}^r {{\lambda _i}\Phi {}_i\left( {{x_i},{y_i}} \right) + \eta } } \right| < {\left( {\mathop {\max \left\{ {\left| {{x_i}} \right|,\left| {{y_i}} \right|} \right\}}\limits_{1 \leqslant i \leqslant r} } \right)^{ - \sigma }}$$
has infinitely many solutions in integers x1, x2,..., x r , y1, y2,..., y r . This result constitutes an improvement upon that of B. Q. Xue.
  相似文献   

12.
We consider the problem of searching for a best LAD-solution of an overdetermined system of linear equations Xa=z, X∈?m×n, mn, \(\mathbf{a}\in \mathbb{R}^{n}, \mathbf {z}\in\mathbb{R}^{m}\). This problem is equivalent to the problem of determining a best LAD-hyperplane x?a T x, x∈? n on the basis of given data \((\mathbf{x}_{i},z_{i}), \mathbf{x}_{i}= (x_{1}^{(i)},\ldots,x_{n}^{(i)})^{T}\in \mathbb{R}^{n}, z_{i}\in\mathbb{R}, i=1,\ldots,m\), whereby the minimizing functional is of the form
$F(\mathbf{a})=\|\mathbf{z}-\mathbf{Xa}\|_1=\sum_{i=1}^m|z_i-\mathbf {a}^T\mathbf{x}_i|.$
An iterative procedure is constructed as a sequence of weighted median problems, which gives the solution in finitely many steps. A criterion of optimality follows from the fact that the minimizing functional F is convex, and therefore the point a ?∈? n is the point of a global minimum of the functional F if and only if 0?F(a ?).
Motivation for the construction of the algorithm was found in a geometrically visible algorithm for determining a best LAD-plane (x,y)?αx+βy, passing through the origin of the coordinate system, on the basis of the data (x i ,y i ,z i ),i=1,…,m.  相似文献   

13.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

14.
Divided differences forf (x, y) for completely irregular spacing of points (x i ,y i ) are developed here by a natural generalization of Newton's scheme. Existing bivariate schemes either iterate the one-dimensional scheme, thus constraining (x i ,y i ) to be at corners of rectangles, or give polynomials Σa jk x j y k having more coefficients than interpolation conditions. Here the generalizedn th divided difference is defined by (1)\(\left[ {01... n} \right] = \sum\limits_{i = 0}^n {A_i f\left( {x_i , y_i } \right)} \) where (2)\(\sum\limits_{i = 0}^n {A_i x_i^j , y_i^k = 0} \), and 1 for the last or (n+1)th equation, for every (j, k) wherej+k=0, 1, 2,... in the usual ascending order. The gen. div. diff. [01...n] is symmetric in (x i ,y i ), unchanged under translation, 0 forf (x, y) an, ascending binary polynomial as far asn terms, degree-lowering with respect to (X, Y) whenf(x, y) is any polynomialP(X+x, Y+y), and satisfies the 3-term recurrence relation (3) [01...n]=λ{[1...n]?[0...n?1]}, where (4) λ= |1...n|·|01...n?1|/|01...n|·|1...n?1|, the |...i...| denoting determinants inx i j y i k . The generalization of Newton's div. diff. formula is (5)
$$\begin{gathered} f\left( {x, y} \right) = f\left( {x_0 , y_0 } \right) - \frac{{\left| {\alpha 0} \right|}}{{\left| 0 \right|}}\left[ {01} \right] + \frac{{\left| {\alpha 01} \right|}}{{\left| {01} \right|}}\left[ {012} \right] - \frac{{\left| {\alpha 012} \right|}}{{\left| {012} \right|}}\left[ {0123} \right] + \cdots + \hfill \\ + \left( { - 1} \right)^n \frac{{\left| {\alpha 01 \ldots n - 1} \right|}}{{\left| {01 \ldots n - 1} \right|}}\left[ {01 \ldots n} \right] + \left( { - 1} \right)^{n + 1} \frac{{\left| {\alpha 01 \ldots n} \right|}}{{\left| {01 \ldots n} \right|}}\left[ {01 \ldots n} \right], \hfill \\ \end{gathered} $$  相似文献   

15.
Let X and Y be two Banach spaces, and f: XY be a standard ε-isometry for some ε ≥ 0. In this paper, by using a recent theorem established by Cheng et al. (2013–2015), we show a sufficient condition guaranteeing the following sharp stability inequality of f: There is a surjective linear operator T: YX of norm one so that
$$\left\| {Tf(x) - x} \right\| \leqslant 2\varepsilon , for all x \in X.$$
As its application, we prove the following statements are equivalent for a standard ε-isometry f: XY:
  1. (i)
    lim inf t→∞ dist(ty, f(X))/|t| < 1/2, for all yS Y ;
     
  2. (ii)
    \(\tau(f)\equiv sup_{y\epsilon S_{Y}}\) lim inf t→∞dist(ty, f(X))/|t| = 0;
     
  3. (iii)
    there is a surjective linear isometry U: XY so that
    $$\left\| {f(x) - Ux} \right\| \leqslant 2\varepsilon , for all x \in X.$$
     
This gives an affirmative answer to a question proposed by Vestfrid (2004, 2015).  相似文献   

16.
It is proved that if an entire function f: ? → ? satisfies an equation of the form α 1(x)β 1(y) + α 2(x)β 2(y) + α 3(x)β 3(y), x,y ∈ C, for some α j , β j : ? → ? and there exist no \({\widetilde \alpha _j}\) and ?\({\widetilde \beta _j}\) for which \(f\left( {x + y} \right)f\left( {x - y} \right) = {\overline \alpha _1}\left( x \right){\widetilde \beta _1}\left( y \right) + {\overline \alpha _2}\left( x \right){\widetilde \beta _2}\left( y \right)\), then f(z) = exp(Az 2 + Bz + C) ? σ Γ(z - z 1) ? σ Γ(z - z 2), where Γ is a lattice in ?; σ Γ is the Weierstrass sigma-function associated with Γ; A,B,C, z 1, z 2 ∈ ?; and \({z_1} - {z_2} \notin \left( {\frac{1}{2}\Gamma } \right)\backslash \Gamma \).  相似文献   

17.
18.
19.
20.
Suppose that an even integrable function Ω on the unit sphere S 1 in R 2 with mean value zero satisfies
$\mathop{\mathrm{essup}}\limits_{\xi\in \mathbf{S}^{1}}\biggl|\int_{\mathbf{S}^{1}}\Omega(\theta)\log\frac{1}{|\theta\cdot\xi|}\,d\theta\biggr|<+\infty,$
then the singular integral operator T Ω given by convolution with the distribution p.v.?Ω(x/|x|)|x|?2, initially defined on Schwartz functions, extends to an L 2-bounded operator. We construct examples of a function Ω satisfying the above conditions and of a continuous bounded integrable function f such that
$\limsup_{\epsilon\to 0^+}\biggl|\int_{\epsilon<|y|}\Omega(y/|y|)|y|^{-2}f(x-y)dy\biggr|=\infty\quad \hbox{a. e.}$
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号