首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A special Harnack inequality is proved for solutions of nonlinear elliptic equations of the p(x)-Laplacian type with a variable exponent p(x) that takes different values on two sides of a hyperplane dividing the domain. Examples are given showing that the classical Harnack inequality does not hold in this case.  相似文献   

2.
The purpose of this paper is to investigate central elements in distribution algebras D i s t(G) of general linear supergroups G = G L(m|n). As an application, we compute explicitly the center of D i s t(G L(1|1)) and its image under Harish-Chandra homomorphism.  相似文献   

3.
We show the existence and multiplicity of solutions to degenerate p(x)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniqueness and nonnegativeness of solutions when the principal operator is monotone and the nonlinearity is nonincreasing. Our operator is of the most general form containing all previous ones and we also weaken assumptions on the operator and the nonlinearity to get the above results. Moreover, we do not impose the restricted condition on p(x) and the uniform monotonicity of the operator to show the existence of three distinct solutions.  相似文献   

4.
We show that viscosity solutions to the normalized p(x)-Laplace equation coincide with distributional weak solutions to the strong p(x)-Laplace equation when p is Lipschitz and \(\inf p>1\). This yields \(\smash {C^{1,\alpha }}\) regularity for the viscosity solutions of the normalized p(x)-Laplace equation. As an additional application, we prove a Radó-type removability theorem.  相似文献   

5.
A graph G is called an (n,k)-graph if κ(G-S)=n-|S| for any S ? V(G) with |S| ≤ k, where ?(G) denotes the connectivity of G. Mader conjectured that for k ≥ 3 the graph K2k+2?(1-factor) is the unique (2k, k)-graph. Kriesell has settled two special cases for k = 3,4. We prove the conjecture for the general case k ≥ 5.  相似文献   

6.
Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p and p′ are joined by an edge if there is an element in G of order pp′. We denote by k(Γ(G)) the number of isomorphism classes of finite groups H satisfying Γ(G) = Γ(H). Given a natural number r, a finite group G is called r-recognizable by prime graph if k(Γ(G)) =  r. In Shen et al. (Sib. Math. J. 51(2):244–254, 2010), it is proved that if p is an odd prime, then B p (3) is recognizable by element orders. In this paper as the main result, we show that if G is a finite group such that Γ(G) = Γ(B p (3)), where p > 3 is an odd prime, then \({G\cong B_p(3)}\) or C p (3). Also if Γ(G) = Γ(B 3(3)), then \({G\cong B_3(3), C_3(3), D_4(3)}\), or \({G/O_2(G)\cong {\rm Aut}(^2B_2(8))}\). As a corollary, the main result of the above paper is obtained.  相似文献   

7.
For integers nr, we treat the rth largest of a sample of size n as an \(\mathbb {R}^{\infty }\)-valued stochastic process in r which we denote as M(r). We show that the sequence regarded in this way satisfies the Markov property. We go on to study the asymptotic behavior of M(r) as r, and, borrowing from classical extreme value theory, show that left-tail domain of attraction conditions on the underlying distribution of the sample guarantee weak limits for both the range of M(r) and M(r) itself, after norming and centering. In continuous time, an analogous process Y(r) based on a two-dimensional Poisson process on \(\mathbb {R}_{+}\times \mathbb {R}\) is treated similarly, but we note that the continuous time problems have a distinctive additional feature: there are always infinitely many points below the rth highest point up to time t for any t >?0. This necessitates a different approach to the asymptotics in this case.  相似文献   

8.
Let C(M) be the space of all continuous functions on M? ?. We consider the multiplication operator T: C(M) → C(M) defined by Tf(z) = zf(z) and the torus
$$O(M) = \left\{ {f:M \to \mathbb{C} \ntrianglelefteq \left\| f \right\| = \left\| {\frac{1}{f}} \right\| = 1} \right\}$$
. If M is a Kronecker set, then the T-orbits of the points of the torus ½O(M) are dense in ½O(M) and are ½-dense in the unit ball of C(M).
  相似文献   

9.
Given an indexing set I and a finite field Kα for each α ∈ I, let ? = {L2(Kα) | α ∈ I} and \(\mathfrak{N} = \{ SL_2 (K_\alpha )|\alpha \in I\}\). We prove that each periodic group G saturated with groups in \(\Re (\mathfrak{N})\) is isomorphic to L2(P) (respectively SL2(P)) for a suitable locally finite field P.  相似文献   

10.
We show that if K is a compact metric space then C(K) is a 2-absolute Lipschitz retract. We then study the best Lipschitz extension constants for maps into C(K) from a given metric space M, extending recent results of Lancien and Randrianantoanina. They showed that a finite-dimensional normed space which is polyhedral has the isometric extension property for C(K)-spaces; here we show that the same result holds for spaces with Gateaux smooth norm or of dimension two; a three-dimensional counterexample is also given. We also show that X is polyhedral if and only if every subset E of X has the universal isometric extension property for C(K)-spaces. We also answer a question of Naor on the extension of Hölder continuous maps.  相似文献   

11.
We present conditions that allow us to prove the existence of eigenvalues and characteristic values for operator F(D) ? C(λ): L 2(R m ) → L 2(R m ), where F(D) is a pseudo-differential operator with a symbol F() and C(λ): L 2(R m ) → L 2(R m ) is a linear continuous operator.  相似文献   

12.
We present necessary and sufficient conditions on planar compacta K and continuous functions f on K in order that f generate the algebras P(K), R(K), A(K) or C(K). We also unveil quite surprisingly simple examples of non-polynomial convex compacta K ? C and fP(K) with the property that fP(K) is a homeomorphism of K onto its image, but for which f ?1 ? P(f(K)). As a consequence, such functions do not admit injective holomorphic extensions to the interior of the polynomial convex hull \(\widehat K\). On the other hand, it is shown that the restriction f*|G of the Gelfand-transform f* of an injective function fP(K) is injective on every regular, bounded complementary component G of K. A necessary and sufficient condition in terms of the behaviour of f on the outer boundary of K is given in order that f admit a holomorphic injective extension to \(\widehat K\). We also include some results on the existence of continuous logarithms on punctured compacta containing the origin in their boundary.  相似文献   

13.
Amply regular with parameters (v, k, λ, μ) we call an undirected graph with v vertices in which the degrees of all vertices are equal to k, every edge belongs to λ triangles, and the intersection of the neighborhoods of every pair of vertices at distance 2 contains exactly μ vertices. An amply regular diameter 2 graph is called strongly regular. We prove the nonexistence of amply regular locally GQ(4,t)-graphs with (t,μ) = (4, 10) and (8, 30). This reduces the classification problem for strongly regular locally GQ(4,t)-graphs to studying locally GQ(4, 6)-graphs with parameters (726, 125, 28, 20).  相似文献   

14.
Let k, n, and r be positive integers with k < n and \({r \leq \lfloor \frac{n}{k} \rfloor}\). We determine the facets of the r-stable n, k-hypersimplex. As a result, it turns out that the r-stable n, k-hypersimplex has exactly 2n facets for every \({r < \lfloor \frac{n}{k} \rfloor}\). We then utilize the equations of the facets to study when the r-stable hypersimplex is Gorenstein. For every k > 0 we identify an infinite collection of Gorenstein r-stable hypersimplices, consequently expanding the collection of r-stable hypersimplices known to have unimodal Ehrhart \({\delta}\)-vectors.  相似文献   

15.
In this paper we show that if \({S\in L(X,Y)}\) and \({R\in L(Y,X),}\) X and Y complex Banach spaces, then the products RS and SR share the Dunford property (C). We also study property (C) for R, S, RS and \({SR \in L(X)}\) in the case that R and S satisfies the operator equations RSR = R 2 and SRS = S 2.  相似文献   

16.
Let (F k,n ) n and (L k,n )n be the k-Fibonacci and k-Lucas sequence, respectively, which satisfies the same recursive relation a n+1 = ka n + a n?1 with initial values F k,0 = 0, F k,1 = 1, L k,0 = 2 and L k,1 = k. In this paper, we characterize the p-adic orders ν p (F k,n ) and ν p (L k,n ) for all primes p and all positive integers k.  相似文献   

17.
We consider the Helmholtz decomposition of the Lebesgue space Lp(Ω). We essentially reproduce a proof given by Solonnikov in [V.A. Solonnikov, Estimates of the solutions of the nonstationary Navier–Stokes system, Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions. Part 7, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Vol. 38, Nauka, Leningrad, 1973, pp. 153–231 (in Russian)] and [V.A. Solonnikov, Estimates for solutions of nonstationary Navier–Stokes equations, J. Sov. Math., 8(4):467–529, 1977].  相似文献   

18.
Let G be a simple graph, let d(v) denote the degree of a vertex v and let g be a nonnegative integer function on V (G) with 0 ≤ g(v) ≤ d(v) for each vertex vV (G). A g c -coloring of G is an edge coloring such that for each vertex vV (G) and each color c, there are at least g(v) edges colored c incident with v. The g c -chromatic index of G, denoted by χ′g c (G), is the maximum number of colors such that a gc-coloring of G exists. Any simple graph G has the g c -chromatic index equal to δ g (G) or δ g (G) ? 1, where \({\delta _g}\left( G \right) = \mathop {\min }\limits_{v \in V\left( G \right)} \left\lfloor {d\left( v \right)/g\left( v \right)} \right\rfloor \). A graph G is nearly bipartite, if G is not bipartite, but there is a vertex uV (G) such that G ? u is a bipartite graph. We give some new sufficient conditions for a nearly bipartite graph G to have χ′g c (G) = δ g (G). Our results generalize some previous results due to Wang et al. in 2006 and Li and Liu in 2011.  相似文献   

19.
Let G be a nonabelian group, and associate the noncommuting graph ?(G) with G as follows: the vertex set of ?(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. Let S 4(q) be the projective symplectic simple group, where q is a prime power. We prove that if G is a group with ?(G) ? ?(S 4(q)) then G ? S 4(q).  相似文献   

20.
We give all solutions of the equation f(n) = g(n) + h(n) for every n ∈ ?, where f is a completely multiplicative, g is a 2-additive, and h is a 3-additive function. We also determine all completely multiplicative functions f and all q-additive functions g for which f(n) = g 2(n) for every n ∈ ?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号