首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Exciton-phonon (EP) coupling in molecular aggregates is reexamined in cases where extended intermolecular interactions result in low-energy excitons with high effective masses. The analysis is based on a single intramolecular vibrational mode with frequency omega0 and Huang-Rhys factor lambda2. When the curvature Jc at the exciton band bottom is much smaller than the free-exciton Davydov splitting W, the strength of the EP coupling is determined by comparing the nuclear relaxation energy lambda2omega0 with the curvature. In this way, weak (lambda2omega0<4piJc), intermediate I (lambda2omega0 approximately 4piJc), and strong I (lambda2omega0>4piJc) coupling regimes are introduced. The conventional intermediate (lambda2omega0 approximately W) and strong (lambda2omega0>W) EP coupling regimes originally defined by Simpson and Peterson [J. Chem. Phys. 26, 588 (1957)] are based solely on the Davydov splitting and are referred to here as intermediate II and strong II regimes, respectively. Within the intermediate I and strong I regimes the near degeneracy of the low-energy excitons allows efficient nonadiabatic coupling, resulting in a spectral splitting between the b- and ac-polarized first replicas in the vibronic progression characterizing optical absorption. Such spectral signatures are clearly observed in OT4 thin films and crystals, where splittings for the lowest energy mode with omega0=161 cm(-1) are as large as 30 cm(-1) with a small variation due to sample disorder. Numerical calculations using a multiphonon BO basis set and a Hamiltonian including linear EP coupling yield excellent agreement with experiment.  相似文献   

2.
Aqueous dispersions of Laponite, a synthetic clay neutralized by sodium counterions, are used as a model of charged anisotropic colloids to probe the influence of the shape of the particle on their organization within a macroscopic nematic phase. Because of the large fraction of condensed sodium counterions in the vicinity of the clay particle, (23)Na NMR is a sensitive probe of the nematic ordering of the clay dispersions. We used line shape analysis of the (23)Na NMR spectra and measurements of the Hahn echo attenuation to quantify the degree of alignment of the individual clay particles along a single nematic director. As justified by simple dynamical simulations of the interplay between the sodium quadrupolar relaxation and its diffusion through the porous network limited by the surface of the clay particles, we probe the degree of ordering within these clay nematic dispersions by measuring the variation of the apparent (23)Na NMR relaxation rates as a function of the macroscopic orientation of the clay dispersion within the magnetic field.  相似文献   

3.
From the relaxation of 23Na in poly(methacrylic acid) solution at field strengths corresponding to 23Na frequencies from 8 to 64 MHz, spectral densities in the range 0–128 MHz were derived. The results are used to discuss the uncertainties connected with current methods to determine correlation times from the nuclear relaxation of small ions in macromolecular solutions.  相似文献   

4.
Perturbation theory is used to derive the complex harmonic components (stationary regime) arising in Kerr effect relaxation for an assembly of nonelectrically interacting, polar, and polarizable symmetric-top molecules acted on by a strong dc bias electric field superimposed on a weak ac electric field. The approach starts from a fractional kinetic equation written in configuration space and represents an extension of the Smoluchowski equation to fractional dynamics. This equation is solved in the context of a subdiffusive process characterized by an anomalous exponent alpha ranging from 0 to 1, the Brownian limit. By using a perturbation procedure restricted to the second order in the ac field strength, analytic expressions for the electric birefringence spectra representing the frequency dependence of the first (in omega) and the second (in 2omega) harmonic components are obtained. Various Cole-Cole-like diagrams are presented in order to illustrate the results so obtained and to emphasize the role played by the fractal parameter alpha in the anomalous diffusion collision process. A comparison of our theoretical model with experimental measurements of the ac Kerr effect response of a dilute polymer solution [poly(3-hexylthiophene)] appears to be quite satisfactory.  相似文献   

5.
In this paper, we examine the validity of the Markovian approximation and the slippage scheme used to incorporate short time transient memory effects in the Markovian master equations (Redfield equations). We argue that for a bath described by a spectral function, J(omega), that is dense and smoothly spread out over the range omega(d), a time scale of tau(b) approximately 1/omega(d) exists; for times of t > tau(b), the Markovian approximation is applicable. In addition, if J(omega) decays to zero reasonably fast in both the omega --> 0 and omega --> infinity limits, then the bath relaxation time, tau(b), is determined by the width of the spectral function and is weakly dependent on the temperature of the bath. On the basis of this criterion of tau(b), a scheme to incorporate transient memory effects in the Markovian master equation is suggested. Instead of using slipped initial conditions, we propose a concatenation scheme that uses the second-order perturbation theory for short time dynamics and the Markovian master equation at long times. Application of this concatenation scheme to the spin-boson model shows that it reproduces the reduced dynamics obtained from the non-Markovian master equation for all parameters studied, while the simple slippage scheme breaks down at high temperatures.  相似文献   

6.
Bi-exponential 23Na nuclear magnetic relaxation is shown to be a general phenomenon in aqueous solutions of charged polymers in the semi-dilute region. Dependence on concentration, degree of polymerization, degree of ionization and presence of simple salt is established and discussed.  相似文献   

7.
Noncovalent cation-pi interactions are important in a variety of supramolecular and biochemical systems. We present a 23Na solid-state nuclear magnetic resonance (SSNMR) study of two sodium lariat ether complexes, 1 and 2, in which a sodium cation interacts with an indolyl group that models the side chain of tryptophan. Sodium-23 SSNMR spectra of magic-angle spinning (MAS) and stationary powdered samples have been acquired at three magnetic field strengths (9.4, 11.75, 21.1 T) and analyzed to provide key information on the sodium electric field gradient and chemical shift (CS) tensors which are representative of the cation-pi binding environment. Triple-quantum MAS NMR spectra acquired at 21.1 T clearly reveal two crystallographically distinct sites in both 1 and 2. The quadrupolar coupling constants, CQ(23Na), range from 2.92 +/- 0.05 MHz for site A of 1 to 3.33 +/- 0.05 MHz for site B of 2; these values are somewhat larger than those reported previously by Wong et al. (Wong, A.; Whitehead, R. D.; Gan, Z.; Wu, G. J. Phys. Chem. A 2004, 108, 10551) for NaBPh4, but very similar to the values obtained for sodium metallocenes by Willans and Schurko (Willans, M. J.; Schurko, R. W. J. Phys. Chem. B 2003, 107, 5144). We conclude from the 21.1 T data that the spans of the sodium CS tensors are less than 20 ppm for 1 and 2 and that the largest components of the EFG and CS tensors are non-coincident. Quantum chemical calculations of the NMR parameters substantiate the experimental findings and provide additional insight into the dependence of CQ(23Na) on the proximity of the indole ring to Na+. Taken together, this work has provided novel information on the NMR interaction tensors characteristic of a sodium cation interacting with a biologically important arene.  相似文献   

8.
A 7.6 ns molecular dynamics trajectory of the betaARK1 PH domain in explicit water with appropriate ions was calculated at 300 K. Spectral densities at omega = 0, omega(N), and 0.87omega(H) and the model-free parameters were evaluated from the experimental as well as the simulated data, taking the anisotropic overall motion of the protein into account. Experimental and simulated spectral densities are in reasonable general agreement for NH bond vectors, where the corresponding motions have converged within the simulation time. A sufficient sampling of the motions for NH bonds within flexible parts of the protein requires a longer simulation time. The simulated spectral densities J(0) and J(omega(N)) are, on average, 4.5% and 16% lower than the experimental data; the corresponding numbers for the core residues are about 6%; the high-frequency spectral densities J(0.87omega(H)) are lower by, on average, 16% (21% for the core). The simulated order parameters, S(2), are also lower, although the overall disagreement between the simulation and experiment is less pronounced: 1% for all residues and 6% for the core. The observed systematic decrease of simulated spectral density and the order parameters compared to the experimental data can be partially attributed to the ultrafast librational motion of the NH bonds with respect to their peptide plane, which was analyzed in detail. This systematic difference is most pronounced for J(0.87omega(H)), which appears to be most sensitive to the slow, subnanosecond time scale of internal motion, whereas J(0) and J(omega(N)) are dominated by the overall rotational tumbling of the protein. Similar discrepancies are observed between the experimentally measured (15)N relaxation parameters (R(1), R(2), NOE) and their values calculated from the simulated spectral densities. The analysis of spectral densities provides additional information regarding the comparison of the simulated and experimental data, not available from the model-free analysis.  相似文献   

9.
Dependence of 23Na nuclear magnetic relaxation on concentration and degree of polymerization is reported for solutions of Na polystyrenesulfonate. In the concentration range 10?1 ? c 10?1 eq/e, 23Na relaxation is far outside the extreme-narrowing limit and relaxation rates depend on the degree of polymerization. These phenomena seem to disappear outside this range.  相似文献   

10.
The mechanisms for the anionic and cationic interactions with myofibrillar proteins in aqueous solutions were investigated by nuclear magnetic resonance over a wide range of salt concentration. Markedly nonlinear dependeces of the 17O and 23Na NMR transverse relaxation rates on salt concentration were analyzed with a thermodynamic linkage model of salt-dependent solubility and hydration (ligand-induced association model), according to Wyman's theory of linked functions. Nonlinear regression analysis of both 17O and 23Na NMR data suggested cooperative, reversible binding of hydrated ions to myofibrillar proteins. Both ions and water were found to exchange fast, on the NMR timescale, between the binding sites of the myofibrillar proteins and the aqueous solution. At sodium chloride concentrations higher than about 0.1 grams salt/gram water, ion activities have marked effects upon the NMR relaxation rates of both ions and water. A salt activity model allowed quantitative fitting of the NMR data at high salt concentrations. The effect of neglecting the ion activity in solutions of myofibrillar proteins was also estimated and compared with the ligand-induced, cooperative association model for myofibrillar proteins. The comparison between the 17O and 23Na results strongly suggests that water is exchanged as the hydrated ion species between the myofibrillar protein binding sites and the bulk, aqueous solution.  相似文献   

11.
An approximate analytic expression is derived for the dynamic electrophoretic mobility of a spherical charged colloidal particle in an electrolyte solution in an applied oscillating electric field. This expression, which takes into account the relaxation effects, is applicable for all values of zeta potential at large kappa a (kappa a > or = ca. 30) and omega/2pi < or = ca. 10 MHz, where kappa is the Debye-Hückel parameter, a is the particle radius, and omega is the frequency of the electric field. It is shown that the obtained mobility expression is in excellent agreement with the exact numerical results of Mangelsdorf and White (J. Chem. Soc., Faraday Trans. 1992, 88, 3567).  相似文献   

12.
《Microporous Materials》1995,3(4-5):497-510
23Na Magic-angle spinning (MAS), double rotation (DOR) and two-dimensional nutation nuclear magnetic resonance (NMR) and static 139La NMR spectroscopy were applied to study the location and migration of sodium and lanthanum cations in faujasites. Generally, 23Na MAS NMR spectroscopy of as-exchanged and hydrated zeolites LaNaY was used for the quantitative determination of non-localized Na+ in the large cavities at a 23Na NMR shift of −9 ppm and of sodium cations observed at −13 ppm. The latter originate from Na+ ions located on position SII in the large cavities, on position SI in the hexagonal prisms and on positions SII′ and/or SI′ in the sodalite cages. The 23Na MAS NMR signal at about −13 ppm was found to be caused by two coonents. The component that is characterized by a quadrupolar interaction causing a field-dependent shift and a signal at v1 = 2vrf in the two-dimensional quadrupolar nutation spectra is attributed to Na+ enclosed in the sodalite cages. The 23Na MAS NMR spectra of dehydrated lanthanum-exchanged faujasites are characterized by a low-field Gaussian line of Na+ located on SI positions in the hexagonal prisms and a high-field quadrupole pattern of Na+ located on positions SII and SI′. The migration of lanthanum cations from the large cavities to position SI′ in the sodalite cages was monitored by 139La NMR spectroscopy and verified by a theoretical estimation of the electric field gradient. The lanthanum migration was found to be coupled with a strain of SiOT and AlOT angles observed by 29Si and 27Al MAS NMR high-field shifts, respectively.  相似文献   

13.
A solvent compensation method based on flow injection analysis is used to obtain high quality nuclear magnetic resonance (NMR) spectra during solvent gradients. Using a binary solvent system containing D2O and CD3OD, NMR line broadening and chemical shift changes are observed with a 10% methanol per min solvent composition gradient. However, by creating a second equal but reverse gradient and combining the two solvent gradients before the NMR detector, the composition of solvent reaching the NMR flow cell is kept constant. We demonstrate a system using flow injection analysis of combining solvent gradients and show constant NMR spectral performance as a function of time as the combined flow has a constant solvent composition irrespective of the initial solvent gradient. Using this approach, methods can be developed to measure high quality NMR spectra during on-flow gradient LC-NMR experiments. The ultimate ability of this approach depends on the ability to compensate for the disturbance of the solvent gradient and reverse gradient by a pair of LC columns (the analytical and reverse gradient columns).  相似文献   

14.
A review is presented on the theoretical basics and recent developments about the diffusiophoresis of charged particles and diffusioosmosis of electrolyte solutions driven by imposed electrolyte concentration gradients with particular emphasis on the principal analytical formulas and their physical interpretations. For diffusiophoresis, migrations of particles with thin polarized electric double layers but arbitrary zeta potentials and with arbitrary double layers but relatively low surface potentials are both discussed in detail, covering not only diffusiophoresis of single particles but also their motions near solid boundaries or other particles. For diffusioosmosis, fluid flows along single plane walls, in micro/nano-channels, and in porous media are considered, in which the solid walls may have arbitrary zeta potentials or surface charge densities, and both the effect of the lateral distribution of the diffuse ions and the relaxation effect in the double layers on the tangential electric field induced by the prescribed electrolyte concentration gradient are included.  相似文献   

15.
The molecular motion in polyepichlorohydrin (PEPCH), in solution and bulk, was studied by high resolution NMR by means of line width, spin-lattice relaxation time T_1 and nuclear Overhauser effect NOE. The results show that the VJGM model can describe the main chain motion of PEPCH in solution perfectly. In bulk state, the relationship between the line width and the temperature is consistent with WLF equation, but that between the high frequency molecular motion correlation time (in T_1 scale ) and temperature is consistent with Arrhenius equation. The motion parameters of PEPCH in both states were calculated. The internal rotation motion of side—CH_2Cl group was analyzed by using equal three-site jump and diffusion internal rotation model in both states.  相似文献   

16.
23Na nuclear magnetic resonance (NMR) spectroscopy of NaCl-exchanged polyamide (PA) films comparable to those of the active skin layer of many reverse osmosis (RO) membranes provides novel insight into the structural environments and dynamical behavior of Na+ in such films. Unsupported PA films were synthesized via interfacial polymerization of trimesoyl chloride in hexane and m-phenylenediamine in aqueous solution, and SEM, FT-IR, and 13C NMR data demonstrate successful thin film polymerization. Compositional data confirm this conclusion and demonstrate equal Na and Cl incorporation during NaCl exchange from aqueous solution. The 23Na NMR spectra for freshly made polymer samples exchanged in 1 M NaCl solution show significant relative humidity (RH) dependence. At near 0% RH, there are resonances for crystalline NaCl and rigidly held Na+ in the PA. With increasing RH, a resonance for solution-like dynamically averaged Na+ appears and above 51% RH is the only signal observed. The slightly negative chemical shift of this resonance suggests a dominantly hydrous environment with some atomic-scale coordination by atoms of the polymer. The greatly reduced 23Na T1 relaxation rates for this resonance relative to bulk solution and crystalline NaCl confirm close association with the polymer. Variable temperature 23Na NMR spectra for a sample equilibrated at 97% RH obtained from −80 to 20 °C show the presence of rigidly held Na+ in a hydrated environment at low temperatures and replacement of this resonance by the dynamically averaged signal at temperatures above about −20 °C. The results provide support for the solution–diffusion model for RO membranes transport and demonstrate the capabilities of multi-nuclear NMR methods to investigate molecular-scale structure and dynamics of the interactions between dissolved species and RO membranes.  相似文献   

17.
(15)N spin relaxation data have provided a wealth of information on protein dynamics in solution. Standard R(1), R(1)(rho), and NOE experiments aimed at (15)N[(1)H] amide moieties are complemented in this work by HA(CACO)N-type experiments allowing the measurement of nitrogen R(1) and R(1)(rho) rates at deuterated (15)N[(2)D] sites. Difference rates obtained using this approach, R(1)((15)N[(1)H]) - R(1)((15)N[(2)D]) and R(2)((15)N[(1)H]) - R(2)((15)N[(2)D]), depend exclusively on dipolar interactions and are insensitive to (15)N CSA and R(ex) relaxation mechanisms. The methodology has been tested on a sample of peptostreptococcal protein L (63 residues) prepared in 50% H(2)O-50% D(2)O solvent. The results from the new and conventional experiments are found to be consistent, with respect to both local backbone dynamics and overall protein tumbling. Combining several data sets permits evaluation of the spectral density J(omega(D) + omega(N)) for each amide site. This spectral density samples a uniquely low frequency (26 MHz at a 500 MHz field) and, therefore, is expected to be highly useful for characterizing nanosecond time scale local motions. The spectral density mapping demonstrates that, in the case of protein L, J(omega(D) + omega(N)) values are compatible with the Lipari-Szabo interpretation of backbone dynamics based on the conventional (15)N relaxation data.  相似文献   

18.
Results of the first solid-state 131Xe NMR study of xenon-containing compounds are presented. The two NMR-active isotopes of xenon, 129Xe (I=1/2) and 131Xe (I=3/2), are exploited to characterize the xenon magnetic shielding and quadrupolar interactions for two sodium perxenate salts, Na4XeO6.xH2O (x=0, 2), at an applied magnetic field strength of 11.75 T. Solid-state 129/131Xe NMR line shapes indicate that the local xenon environment in anhydrous Na4XeO6 adopts octahedral symmetry, but upon hydration, the XeO6(4-) anion becomes noticeably distorted from octahedral symmetry. For stationary, anhydrous samples of Na4XeO6, the heteronuclear 129/131Xe-23Na dipolar interaction is the principal contributor to the breadth of the 129/131Xe NMR lines. For stationary and slow magic-angle-spinning samples of Na4XeO(6).2H2O, the anisotropic xenon shielding interaction dominates the 129Xe NMR line shape, whereas the 131Xe NMR line shape is completely dominated by the nuclear quadrupolar interaction. The xenon shielding tensor is approximately axially symmetric, with a skew of -0.7+/-0.3, an isotropic xenon chemical shift of -725.6+/-1.0 ppm, and a span of 95+/-5 ppm. The 131Xe quadrupolar coupling constant, 10.8+/-0.5 MHz, is large for a nucleus at a site of approximate Oh symmetry, and the quadrupolar asymmetry parameter indicates a lack of axial symmetry. This study demonstrates the extreme sensitivity of the 131Xe nuclear quadrupolar interaction to changes in the local xenon environment.  相似文献   

19.
Multinuclear pulsed gradient spin-echo (PGSE) NMR diffusion and linewidth measurements were used to probe binding and transport in aqueous Na+-15-crown-5, Na+-18-crown-6, Cs+-15-crown-5 and Cs+-18-crown-6 systems. Since direct PGSE observation of many alkali cations is precluded by either low inherent sensitivity or rapid relaxation (or both), the feasibility of proton-detected electrophoretic NMR (ENMR) measurements to complement PGSE data was investigated. ENMR measurements were performed on aqueous Cs+-, Li+-, Na+-, K+-, and Rb+- 18-crown-6 systems. The data analysis is based on a two-site binding model and its corresponding association constants. Cs+ was found to bind considerably more tightly to 18-crown-6 (K=8 M-1) than to 15-crown-5 (K approximately 2 M-1), whereas Na+ had almost equal affinity (K approximately 4.5 M-1) for 15-crown-5 and 18-crown-6. The difficulties encountered in analysing the NMR parameters, methodological limitations and the implied need for more complicated binding models are discussed.  相似文献   

20.
The steady diffusioosmotic flows of an electrolyte solution along a charged plane wall and in a capillary channel between two identical parallel charged plates generated by an imposed tangential concentration gradient are theoretically investigated. The plane walls may have either a constant surface potential or a constant surface charge density. The electrical double layers adjacent to the charged walls may have an arbitrary thickness and their electrostatic potential distributions are determined by the Poisson-Boltzmann equation. Solving a modified Navier-Stokes equation with the constraint of no net electric current arising from the cocurrent diffusion, electric migration, and diffusioosmotic convection of the electrolyte ions, the macroscopic electric field and the fluid velocity along the tangential direction induced by the imposed electrolyte concentration gradient are obtained semianalytically as a function of the lateral position in a self-consistent way. The direction of the diffusioosmotic flow relative to the concentration gradient is determined by the combination of the zeta potential (or surface charge density) of the wall, the properties of the electrolyte solution, and other relevant factors. For a given concentration gradient of an electrolyte along a plane wall, the magnitude of fluid velocity at a position in general increases with an increase in its electrokinetic distance from the wall, but there are exceptions. The effect of the lateral distribution of the induced tangential electric field and the relaxation effect in the double layer on the diffusioosmotic flow are found to be very significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号