首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl, for which single-crystal diffraction structures reveal close CH...O=C and C[triple bond]CH...N[triple bond]C distances, is investigated in a study that combines the experimental determination of 1H, 13C, and 15N chemical shifts by magic-angle spinning (MAS) solid-state NMR with first-principles calculations using plane-wave basis sets. An optimized synthetic route, including the isolation and characterization of intermediates, to 4-cyano-4'-ethynylbiphenyl at natural abundance and with 13C[triple bond]13CH and 15N[triple bond]C labeling is described. The difference in chemical shifts calculated, on the one hand, for the full crystal structure and, on the other hand, for an isolated molecule depends on both intermolecular hydrogen bonding interactions and aromatic ring current effects. In this study, the two effects are separated computationally by, first, determining the difference in chemical shift between that calculated for a plane (uracil) or an isolated chain (4-cyano-4'-ethynylbiphenyl) and that calculated for an isolated molecule and by, second, calculating intraplane or intrachain nucleus-independent chemical shifts that quantify the ring current effects caused by neighboring molecules. For uracil, isolated molecule to plane changes in the 1H chemical shift of 2.0 and 2.2 ppm are determined for the CH protons involved in CH...O weak hydrogen bonding; this compares to changes of 5.1 and 5.4 ppm for the NH protons involved in conventional NH...O hydrogen bonding. A comparison of CH bond lengths for geometrically relaxed uracil molecules in the crystal structure and for geometrically relaxed isolated molecules reveals differences of no more than 0.002 A, which corresponds to changes in the calculated 1H chemical shifts of at most 0.1 ppm. For the C[triple bond]CH...N[triple bond]C weak hydrogen bonds in 4-cyano-4'-ethynylbiphenyl, the calculated molecule to chain changes are of similar magnitude but opposite sign for the donor 13C and acceptor 15N nuclei. In uracil and 4-cyano-4'-ethynylbiphenyl, the CH hydrogen-bonding donors are sp2 and sp hybridized, respectively; a comparison of the calculated changes in 1H chemical shift with those for the sp3 hybridized CH donors in maltose (Yates et al. J. Am. Chem. Soc. 2005, 127, 10216) reveals no marked dependence on hybridization for weak hydrogen-bonding strength.  相似文献   

2.
2D NMR方法研究抗癌药物冬凌草乙素的结构与谱线归属   总被引:6,自引:0,他引:6  
用异核化学位移相关谱、远程异核化学位移相关谱和同核化学位移相关谱等现代核磁共振技术对抗癌中草药冬凌草中分离出的抗癌、抗菌有效成分冬凌草乙素分子的~(13)C和~1H化学位移进行了完全归属,为冬凌草乙素分子溶液中的三维空间结构研究提供了可靠的结构参数。  相似文献   

3.
A protonation and dynamic structural study of doxylamine succinate, a 1:1 salt of succinic acid with dimethyl-[2-(1-phenyl-1-pyridin-2-yl-ethoxy)ethyl]amine, in solution using one- and two-dimensional 1H and 13C NMR experiments at variable temperature and concentration is presented. The two acidic protons of the salt doxylamine succinate are in 'intermediate' exchange at room temperature, as evidenced by the appearance of a broad signal. This signal evolves into two distinct signals below about -30 degrees C. A two-dimensional 1H-1H double quantum filtered correlation experiment carried out at -55 degrees C shows protonation of one of the acidic protons to the dimethylamine nitrogen. A two-dimensional rotating frame 1H-1H NOE experiment at the same temperature reveals that the other proton remains with the succinate moiety. Comparison of the 1H and 13C chemical shifts and the 13C T1 relaxation times of the salt with those of the free base further substantiate the findings.  相似文献   

4.
Proton and 13C NMR data are presented for six different compounds containing the fragment C6H5? C? CH2SiMe3. In a number of instances it was observed that, in the 1H NMR spectrum, the SiMe3 groups had a chemical shift significantly upfield from internal tetramethylsilane (δ = ?0·14 to ?0·36). These unexpected upfield chemical shifts of the SiMe3 groups are suggested to result from the predominance, on a time averaged basis, of conformations which place the methyl groups attached to silicon in the face of an aromatic ring. The preference for such conformations is, in turn, the result of rotational preferences exhibited by the ‘flat’ aromatic ring. These results suggest that conformational analysis of systems containing a phenyl ring should take more explicit account of the fact that the preferred orientation of this phenyl ring can have a profound influence on the conformation adopted by the remainder of the molecule. In addition, the preferred conformation of the phenyl ring can have a significant effect upon the observed 1H NMR chemical shifts, while the 13C chemical shifts are relatively insensitive to conformational factors and can be explained by well-known substituent effects previously delineated for all-carbon systems.  相似文献   

5.
The (1)H NMR spectrum of a sample of acrolein dissolved in the nematic liquid crystal phase I52 has been analysed to yield 18 dipolar couplings between all the magnetic nuclei in the molecule; moreover, the (13)C and (13)C{(1)H} NMR spectra of a sample of acrolein in CDCl(3) were recorded and analysed to determine the indirect J(ij) couplings. The data were used to obtain the relative positions of the carbon and hydrogen atoms, assuming that these are independent of the conformations generated by rotation around the C--C bond through an angle phi, and to obtain a probability distribution P(phi). It has been found that in the liquid phase, the distribution is a maximum at the trans form whereas the abundance of the cis form is significantly smaller compared with that found by microwave spectroscopy or high level quantum mechanical calculations. Such calculations produced also a suitable force field needed to develop suitable strategies for vibrational correction procedure in the case of flexible molecules.  相似文献   

6.
Careful reevaluation of the 1H and 13C NMR spectroscopic data of filifolinol acetate (4) led to the reassignment of the C-10 and C-11 signals, as well as the gem-dimethyl signals. Single crystal X-ray analysis provided an independent structural confirmation of 4, and comparison of the experimental vibrational circular dichroism spectrum with calculations performed using density functional theory provided the absolute configuration of this 3H-spiro-1-benzofuran-2,1'-cyclohexane and related molecules.  相似文献   

7.
The structure of the molecule of 4, 6-diamino-3, S-dicvano-2-cyanomethylpyridine is confirmed by the 13C NMR spectrum which, together with the t H and15N NMR spectra (the "complete" NMR spectrum), allows almost unambiguous assignment (with the exception of the virtually coinciding paired signals of the atoms of carbon and nitrogen of the 3- and 5-CN groups). The applicability of the method of increments in the 13C NMR was shown in the assignment of the signals of the carbon atoms in pyridine derivatives. The ratio of the chemical shifts of the nitrogen and hydrogen atoms of the amino groups, known from the literature for aminobenzenes, was confirmed.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 508–511, April, 1996.  相似文献   

8.
The spatial isomers of the new synthetic analogs of ethyl permithrinic ether and permethrin were investigated by NMR (1H, 13C, DEPT (distortionless enhancement by polarization transfer), COSY (correlation spectroscopy), CHCORR (heteronuclear (C, H) shift correlation spectroscopy), ROESY (rotating-frame Overhauser effect spectroscopy)). Several tendencies were revealed in the 1H and 13C chemical shifts of the α atoms of the substituents in the 2nd and 3rd positions of the cyclopropane ring. For substituents cis-orientated relative to the ester group, the spectra show a paramagnetic shift of the 1H signals and the diamagnetic shift of the 13C signals relative to the trans-orientated substituents. The 1H and 13C chemical shifts of the α atoms of the substituents in the 2nd and 3rd positions of the cyclopropane ring permit an unambiguous determination of the stereochemistry of ethyl permethrinic ether and permethrin analogs.  相似文献   

9.
High resolution 1H and 13C NMR spectra of four 3-ethyl-4-hydroxy- 4-phenylpiperidines 1-4 have been recorded in CDCl3 and analysed. The conformations of phenyl and hydroxyl groups at C(4) and ethyl group at C(3) were analysed in detail. The chemical shift of the methyl protons in the ethyl group are quite surprising; they are close to TMS in CDCl(3) and even negative in DMSO-d6. These results are interpreted in terms of the magnetic anisotropy of the phenyl rings at C(2) and C(4) which, in turn, depend on the conformations of the ethyl group at C(3) and the hydroxyl group at C(4). Favoured conformations of ethyl group at C(3) and hydroxyl group at C(4) were calculated by AM1 methods.  相似文献   

10.
用同核化学位移相关谱及旋转坐标系中的同核化学位移相关谱和旋转坐标系中的同核NOE实验等新的二维核磁共振方法对首次从西洋参叶中分离出的Ocotillol型皂甙(OTS)的~1H化学位移进行了完全归属,为OTS分子溶液中的三维空间结构研究提供了可靠的结构参数.  相似文献   

11.
Carr-Purcell-Meiboom-Gill relaxation dispersion NMR spectroscopy has evolved into a powerful approach for the study of low populated, invisible conformations of biological molecules. One of the powerful features of the experiment is that chemical shift differences between the exchanging conformers can be obtained, providing structural information about invisible excited states. Through the development of new labeling approaches and NMR experiments it is now possible to measure backbone 13C(alpha) and 13CO relaxation dispersion profiles in proteins without complications from 13C-13C couplings. Such measurements are presented here, along with those that probe exchange using 15N and 1HN nuclei. A key experimental design has been the choice of an exchanging system where excited-state chemical shifts were known from independent measurement. Thus it is possible to evaluate quantitatively the accuracy of chemical shift differences obtained in dispersion experiments and to establish that in general very accurate values can be obtained. The experimental work is supplemented by computations that suggest that similarly accurate shifts can be measured in many cases for systems with exchange rates and populations that fall within the range of those that can be quantified by relaxation dispersion. The accuracy of the extracted chemical shifts opens up the possibility of obtaining quantitative structural information of invisible states of the sort that is now available from chemical shifts recorded on ground states of proteins.  相似文献   

12.
A procedure is described for determining the structure of a small molecule from a single NMR experiment. Several standard NMR sequences are combined so that the essential structural information is obtained in just one pass. Two-dimensional (13)C-(13)C correlations ("INADEQUATE"), single- and multiple-bond (13)C-(1)H correlations, and the conventional (13)C spectrum are recorded in parallel, making use of separate receiver channels for acquisition of (13)C and (1)H signals. The natural-abundance (13)C-(13)C correlation measurements employ a high-sensitivity cryogenically cooled probe, optimized for (13)C detection. An extension of this "all-in-one" sequence with three parallel receivers permits the corresponding natural-abundance (15)N spectra to be included.  相似文献   

13.
13C-NMR chemical shifts were measured for C-4 and C-6 in a collection of eight crystalline glucoses and glucosides. The influence of the hydroxymethyl conformation was greater at C-4 than at C-6, with mean chemical shifts for gauche–trans molecules displaced 3.1 ppm (C-4) and 2.5 ppm (C-6) relative to gauche–gauche molecules. This information was used to interpret 13C-NMR spectra of crystalline celluloses. Chemical shifts for C-4 in the crystallite cores of celluloses I and II differed by just 0.2 ppm, but the corresponding chemical shifts for well-ordered crystallite surfaces differed by 3.0 ppm. The separation between crystallite-surface signals was attributed to different hydroxymethyl conformations at the cellulose–water interface, i.e., gauche–gauche and gauche–trans on crystallites of cellulose I and cellulose II, respectively. A broad C-4 signal in the spectrum of cellulose II indicated gauche–gauche conformations in disordered cellulose. Chemical shifts for C-6 were consistent with these conformations.  相似文献   

14.
13C chemical shift tensor data from 2D FIREMAT spectra are reported for 4,7-di-t-butylacenaphthene and 4,7-di-t-butylacenaphthylene. In addition, calculations of the chemical shielding tensors were completed at the B3LYP/6-311G** level of theory. While the experimental tensor data on 4,7-di-t-butylacenaphthylene are in agreement with theory and with previous data on polycyclic aromatic hydrocarbons, the experimental and theoretical data on 4,7-di-t-butylacenaphthene lack agreement. Instead, larger than usual differences are observed between the experimental chemical shift components and the chemical shielding tensor components calculated on a single molecule of 4,7-di-t-butylacenaphthene, with a root mean square (rms) error of +/-7.0 ppm. The greatest deviation is concentrated in the component perpendicular to the aromatic plane, with the largest value being a 23 ppm difference between experiment and theory for the 13CH2 carbon delta11 component. These differences are attributed to an intermolecular chemical shift that arises from the graphitelike, stacked arrangement of molecules found in the crystal structure of 4,7-di-t-butylacenaphthene. This conclusion is supported by a calculation on a trimer of molecules, which improves the agreement between experiment and theory for this component by 14 ppm and reduces the overall rms error between experiment and theory to 4.0 ppm. This intermolecular effect may be modeled with the use of nuclei independent chemical shieldings (NICS) calculations and is also observed in the isotropic 1H chemical shift of the CH2 protons as a 4.2 ppm difference between the solution value and the solid-state chemical shift measured via a 13C-1H heteronuclear correlation experiment.  相似文献   

15.
Replacement of H by D perturbs the (13)C NMR chemical shifts of an alkane molecule. This effect is largest for the carbon to which the D is attached, diminishing rapidly with intervening bonds. The effect is sensitive to stereochemistry and is large enough to be measured reliably. A simple model based on the ground (zero point) vibrational level and treating only the C-H(D) degrees of freedom (local mode approach) is presented. The change in CH bond length with H/D substitution as well as the reduction in the range of the zero-point level probability distribution for the stretch and both bend degrees of freedom are computed. The (13)C NMR chemical shifts are computed with variation in these three degrees of freedom, and the results are averaged with respect to the H and D distribution functions. The resulting differences in the zero-point averaged chemical shifts are compared with experimental values of the H/D shifts for a series of cycloalkanes, norbornane, adamantane, and protoadamantane. Agreement is generally very good. The remaining differences are discussed. The proton spectrum of cyclohexane- is revisited and updated with improved agreement with experiment.  相似文献   

16.
The complex Co4 1(2)8- is a tetranuclear cobalt(II) cage compound that assembles in aqueous solutions above pH 4 and is capable of encapsulating a variety of organic guest molecules, for example, benzene, hexane, chlorobutane, butanol, and ethyl acetate. Ligand 1 is a resorc[4]arene-based molecule with iminodiacetate moieties appended to its upper rim. 1H NMR studies of Co4 1(2)8-.guest complexes demonstrate inclusion of nonpolar hydrocarbons, substituted phenyls, alcohols, halogen-containing hydrocarbons, and polar organic molecules. The complex Co4 1(2)8- acts as an NMR shift reagent and causes substantial upfield isotropic hydrogen shifts (-30 to -40 ppm) in the guest molecule and separation of the guest hydrogen chemical shifts by typically 12 ppm. The complex Co4 1(2)8- will encapsulate molecules with fewer than eight atoms in a linear chain, mono- and disubstituted benzenes, and polar molecules with greater than two carbon atoms. The solid-state structure of Ba4[Co4 1(2).C6H5C2H5] shows a disordered guest molecule encapsulated within the cavity of Co4 1(2)8-. The cavity dimensions, bond lengths, and bond angles of Ba4[Co4 1(2).C6H5C2H5] are very similar to those determined in Ba4[Co4 1(2).6H2O].  相似文献   

17.
A comparative study of the hypercoordinate square-pyramidal carbocations C7H9+ and C8H9+ was performed by the ab initio/GIAO-CCSD(T) method. The structures and 13C NMR chemical shifts of the cations were calculated at the GIAO-CCSD(T)/tzp/dz//MP2/cc-pVTZ level. The bishomo square pyramidal structure 1 was calculated for C7H9+ at the MP2/cc-pVTZ level. The calculated 13C NMR chemical shifts of structure 1 agree extremely well with the experimental values. However, unlike for C7H9+ both the bishomo square pyramidal structure 3 and the trishomocyclopropenium type structure 4 were found to be minima on the potential energy surface of C8H9+. They are very close energetically with cation 3, only 0.7 kcal/mol less stable than cation 4 at the MP2/cc-pVTZ//MP2/cc-pVTZ + ZPE level. Neither structure 3 nor 4 yields NMR spectra that agree with experiment. However, a weighted average of the two reproduces the observed NMR spectrum of C8H9+ (at -80 degrees C) quite well.  相似文献   

18.
1,2,3,4,5,6,7,8-Octaethylanthracene (5), 1,2,3,4,6,7,8-heptaethylfluorene (7), and 1,2,3,4,5,6,7,8-octaethylfluorene (8) were synthesized by Friedel-Crafts ethylations of 9,10-dihydroanthracene and fluorene. MM3 calculations indicate that the two ethylated six-membered rings of 5 and 7 are conformationally independent. According to the calculations, two low-energy conformers of each compound are possible with the ethyl groups attached to the external aryl rings arranged in an alternated "up-down" orientation. MM3 calculations indicate that in the lowest energy conformation the central fluorene core of 8 adopts a twisted conformation to avoid repulsive steric interactions between the ethyls at the bay region. Two fully alternated up-down conformations are possible for 8, differing in the orientation ("in" or "out") of the ethyls in the bay region. MM3 calculations predict that the lowest energy conformer is the fully alternated "out" form of C(2)() symmetry. The rotational barriers of 5, 7, and 8 are in the 8.7-11.3 kcal mol(-1) range, the largest barrier corresponding to the more crowded octaethylfluorene 8. Anthracene 5 adopts in the crystal a conformation of approximate C(2)(h) symmetry with pairs of peri groups on the same edge of the molecule oriented syn. The conformations adopted in the crystal by 7 and 8 do not correspond to the calculated lowest energy form. In the conformation of 7 in the crystal the ethyl groups on the trisubstituted ring adopt the unusual all syn arrangement. Octaethylfluorene 8 adopts a conformation with a twisted central fluorene core but with a syn arrangement of a pair of vicinal ethyl groups.  相似文献   

19.
The experimental (1)H, (13)C NMR spectra of 3,3-dimethoxy-1-(imidazolidin-2-ylidene)propan-2-one were recorded in CDCl(3) at temperature range 213-323 K. The variable temperature spectra revealed a dynamic NMR effect which is attributed to restricted rotation around the C=C double bond. Fast exchange processes of deuterium atoms between CDCl(3) and 3,3-dimethoxy-1-(imidazolidin-2-ylidene)propan-2-one or fast exchange of proton between nitrogen and oxygen atoms of carbonyl group is also revealed by broadening of N-H (singlet) proton NMR signals. Proton and carbon theoretical chemical shifts of the title molecule were calculated by using RHF and MP2-GIAO levels and different basis sets in gas phase at 298 K. The calculated proton chemical shifts show that the experimental values have no agreement with theoretical values, but for carbon chemical shifts a good agreement achieved by using RHF with 6-31G basis set and MP2/3-21G, 6-31G basis sets. Discrepancies are attributed to either the limitations of calculating program, because the change of the structure while rotation are not considered. The results showed that to select of basis set has more important rule, because RHF-GIAO level calculation with 6-31G basis set in gas phase can excellently reproduce the (13)C NMR spectrum. Moreover, MP2/3-21G, 6-31G calculation has not significant influence on (13)C NMR chemical shifts with respect to RHF-6-31G.  相似文献   

20.
A reliable method of automatically assigning one-dimensional proton spectra is described. The method relies on the alignment of the proton spectrum with an associated heteronuclear single-quantum coherence (HSQC) spectrum, transferring the stoichiometry and couplings to the HSQC. The HSQC spectrum is then assigned using a linear assignment procedure in which a fitness function incorporating (1)H chemical shifts, (1)H couplings and (13)C shifts are employed. The method uniquely employs a sequential procedure in which only correlations of like stoichiometry are assigned at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号