首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The excitation energy of Brooker's merocyanine in water–methanol mixtures shows nonlinear behavior with respect to the mole fraction of methanol, and it was suggested that this behavior is related to preferential solvation by methanol. We investigated the origin of this behavior and its relation to preferential solvation using the three‐dimensional reference interaction site model self‐consistent field method and time‐dependent density functional theory. The calculated excitation energies were in good agreement with the experimental behavior. Analysis of the coordination numbers revealed preferential solvation by methanol. The free energy component analysis implied that solvent reorganization and solvation entropy drive the preferential solvation by methanol, while the direct solute–solvent interaction promotes solvation by water. The difference in the preferential solvation effect on the ground and excited states causes the nonlinear excitation energy shift. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
Deep eutectic solvents seem to be environmentally friendly solvents, particularly because they are prepared easily and have very low-vapor pressures under ambient conditions. They are suitable candidates as green solvents for reaction media with special properties. To present this behavior, substitution reactions of some para- and meta-substituted anilines with 1-fluoro-2,4-dinitrobenzene have been spectrophotometrically investigated in varying mole fractions of ethaline as a deep eutectic solvent in dimethyl sulfoxide (DMSO). The measured rate coefficients of the reaction demonstrated a noticeable variation with the increasing mole fraction of ethaline in ethaline-DMSO mixtures. The linear free energy relationship (LFER) of second-order rate coefficients based on Hammett's substituent constants demonstrates a reasonably linear straight line with a negative slope in different mole fractions of ethaline-DMSO mixtures. Another LFER investigation based on the polarity parameters of the media showed a good agreement with hydrogen bond donor and acceptor abilities of the solvent. Non-LFER assay according to the preferential solvation model confirmed differences between the microsphere solvation of the solute molecules and the bulk composition of the solvents.  相似文献   

3.
The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale (E(T)) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.  相似文献   

4.
The solvatochromic properties of the free base and the protonated 5,10,15,20-tetrakis(4-trimethyl-ammonio-phenyl)-porphine tetratosylate (TTMAPP) were studied in pure water, methanol, ethanol, 2-propanol, and their corresponding aqueous mixtures. The correlation of the empirical solvent polarity scale (E T) values of TTMAPP with composition of the solvents were analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition effects in preferential solvation of the solute dyes were investigated in terms of both solvent–solvent and solute–solvent interactions and also the local mole fraction of each solvent composition was calculated in the cybotactic region of the probe. The effective mole fraction variation may provide significant physicochemical insights in the microscopic and molecular level of interactions between TTMAPP species and the solvent components and, therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TTMAPP.  相似文献   

5.
Solvation characteristics in ternary solvent mixtures have been studied by monitoring the solvent-sensitive electronic absorption band of a ketocyanine dye in two ternary solvent mixtures, water + ethanol + benzene and water + ethanol + cyclohexane, in which one of the pairs are partially miscible. Investigations have been done in a completely miscible region including the binodal curve. The maximum energy of absorption (E) of the solute in a ternary solvent mixture differs significantly from the mole fraction average of the E-values in the component solvents. Results in the corresponding binary solvent mixtures also show a deviation of the E-value from the mole fraction averaged E-values, indicating preferential solvation by a component solvent. The results in ternary solvent mixture have been explained in terms of a realistic model of solvation using the results on binary solvation.  相似文献   

6.
Solvation characteristics of a ketocyanine dye have been studied in completely miscible ternary solvent mixtures, namely, methanol + acetone + water and methanol + acetone + benzene, by monitoring the solvatochromic absorption band of the dye. The maximum energy of absorption (E) of the solute in a ternary solvent mixture differs significantly from the mole fraction average of the E values in the component solvents. Results in the corresponding binary solvent mixtures also show a deviation of the E value from the mole fraction averaged E values. The results have been explained in terms of preferential solvation using a two phase model of solvation. The excess or deficit over the bulk composition of a solvent component in the vicinity of the solute molecule in a ternary solvent mixture has been estimated using the knowledge of solvation in the corresponding binary mixtures.  相似文献   

7.
8.
Solvation characteristics of 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridino)phenolate in completely miscible ternary solvent mixtures (viz., methanol + acetone + water, methanol + acetone + benzene, and methanol + chloroform + benzene) have been studied by using an electronic spectroscopic procedure. The transition energy (E) corresponding to the charge-transfer band maximum of the solute in a ternary solvent mixture differs significantly from the average E-values in the component solvents weighted by the mole fraction of the solvents. A two-phase model of solvation has been invoked to explain the results. The excess or deficit of solvent components in the local region of the solute molecule over that in the bulk has been estimated using the knowledge of solvation in binary solvent mixtures.  相似文献   

9.
Infrared spectroscopy studies of methyl 4-hydroxybenzoate (MHB) in 17 different organic solvents and in ethanol/CCl4 binary solvent were undertaken to investigate the solvent-solute interactions. The frequencies of carbonyl stretching vibration nu(C=O) of MHB in single solvents were correlated with the solvent acceptor number (AN) and the linear solvation energy relationships (LSER). The assignments of the two bands of nu(C=O) of MHB in alcohols and the single one of that in non-alcoholic solvents were discussed. The shifts of nu(C=O) of MHB in ethanol/CCl4 binary solvents showed that several kinds of solute-solvent hydrogen bonding interactions coexisted in the mixture solvents, with a change in the mole fraction of ethanol in the binary solvents.  相似文献   

10.
Solvation characteristics of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone (1) in pure and binary solvent mixtures have been studied by UV-vis absorption spectroscopy and laser-induced fluorescence techniques. The binary solvent mixtures used as CCl(4) (tetrachloromethane)-DMF (N,N-dimethylformamide), AN (acetonitrile)-DMSO (dimethylsulfoxide), CHCl(3) (chloroform)-DMSO, CHCl(3)-MeOH (methanol), and MeOH-DMSO. The longest wavelength band of 1 has been studied in pure solvents as well as in binary solvent mixtures as a function of the bulk mole fraction. The Vis absorption band maxima show an unusual blue shift with increasing solvent polarity. The emission maxima of 1 show changes with varying the pure solvents and the composition in the case of binary solvent mixtures. Non-ideal solvation characteristics are observed in all binary solvent mixtures. It has been observed that the quantity [nu (12)-(X(1)nu (1)+X(2)nu (2))] serves as a measure of the extent of preferential solvation, where nu and X are the position of band maximum in wavenumbers (cm(-1)) and the bulk mole fraction values, respectively. The preferential solvation parameters local mole fraction (X(2)(L)), solvation index (delta(s2)), and exchange constant (k(12)) are evaluated.  相似文献   

11.
Computer simulations are used to study solvation free energies and solubilities in supercritical solvents. Solvation free energies are calculated using the particle insertion method. The equilibrium solvent configurations required for these calculations are based on molecular dynamics simulations employing model solvent potentials previously tuned to reproduce liquid-vapor coexistence properties of the fluids Xe, C(2)H(6), CO(2), and CHF(3). Solutes are represented by all-atom potentials based on ab initio calculations and the OPLS-AA parameter set. Without any tuning of the intermolecular potentials, such calculations are found to reproduce the solvation free energies of a variety of typical solid solutes with an average accuracy of +/-2 kJmol. Further calculations on simple model solutes are also used to explore general aspects of solvation free energies in supercritical solvents. Comparisons of solutes in Lennard-Jones and hard-sphere representations of Xe show that solvation free energies and thus solubilities are not significantly influenced by solvent density fluctuations near the critical point. The solvation enthalpy and entropy do couple to these fluctuations and diverge similarly to solute partial molar volumes. Solvation free energies are also found to be little affected by the local density augmentation characteristic of the compressible regime. In contrast to solute-solvent interaction energies, which often provide a direct measure of local solvent densities, solvation free energies are remarkably insensitive to the presence of local density augmentation.  相似文献   

12.
Sodium-23 NMR chemical shifts and linewidths have been measured for 0.1M NaClO4 in binary mixtures of N-methylformamide (NMF) with a series of other solvents, as a function of the solvent mole fraction. The relative solvent composition at the isosolvation point, the mid-value of the Na-23 chemical shift between those measured in the respective pure solvents, reveals preferential solvation of the sodium cation in many cases. The isosolvation composition correlates well with the relative solvating abilities of the two solvents-as characterized by their donicities-provided that the cation-solvent interactions are of the hard-hard type and that they are not complicated by interionic interactions. The variation in the electric field gradient around the sodium nucleus, as the composition of the solvent changes, results in broadening of the resonance line. Maximum broadening occurs close to the solvent mole fraction corresponding to the isosolvation point.  相似文献   

13.
Heats of solution of pyridine (PY) over a range of compositions of methanol-acetonitrile (MeOH-AN) mixed solvents are measured at 298.15 K by calorimetry. Standard enthalpies of transferring PY from MeOH into its mixtures with AN are calculated from the obtained data. It is established that upon moving from methanol to acetonitrile, the solvation of PY becomes less exothermic, and marked changes in the energetics of amine solvation are observed at mole fraction ζAN = 0.8–1.0. It is shown that pyridine resolvates in the given range of mixed solvent compositions, predominantly through resolvation of the nitrogen atom in the amine group as a result of a considerable increase in the basicity of the mixed solvent. It is established that in the 0.0–0.8 range of AN mole fractions, PY molecules are predominantly solvated by MeOH molecules.  相似文献   

14.
In this paper we propose a mean-field theory to calculate the solvation free energy of a charged solute imbedded in a complex multi-component solvent. We considered a solvent made up of a mixture of small (electrolyte solution) and large (polymer) components. The presence of macromolecules ensures reduced mixing entropy among the different solvent components, an effect due to polymer connectivity. The reduced entropy favours strong preferential distribution of a particular solvent even in the presence of weak preferential solute–solvent interactions. In addition, two energy terms must be considered: (a) the interaction between the solute electrostatic potential and the electrolyte solution and (b) the formation of a polymer–solute interface. Because of the different dielectric permittivity of the solvent components, the electrolyte and polymer distribution functions are strongly coupled: ions, indeed, are more solvated in regions of higher local dielectric permittivity arising from the inhomogeneous mixing of solvent and polymer. We combined together the different energy terms in the framework of the de Gennes free energy functional for polymer solutions along with a generalised Poisson–Boltzmann equation developed for inhomogeneous dielectric media. Moreover, the preferential electrolyte solvation in regions of greater polarity was considered by an extension of the Born equation. Setting the polymer dielectric permittivity smaller than the solvent one and making null the specific polymer–solute interactions, we calculated enhanced electrolyte concentration and reduced polymer concentration near the solute surface on raising the solute surface charge density. The theory shows also the breakdown of the widely used separation between electrostatic and surface tension-dependent contributions to solvation energy when non-ideal mixed solvents are considered. In fact, according to the model, the surface tension of such mixed solvents strongly depends on the solute surface charge density: at high potentials the interfacial tension may increase rather than decrease on raising the polymer volume fraction. The theoretical results have been compared with experimental data on polymer+electrolyte solution surface tension and with solubility data of colloidal particles. The comparison evidences the complex behaviour of multi-component solvents going well beyond the trivial weighted average of the dielectric permittivity and surface tension of the isolated chemical components. Deviations from the simple behaviour predicted by an average picture of multi-component solvents could be understood by developing more sophisticated, but still simple, approaches like that proposed in this paper.Contribution to the Jacopo Tomasi Honorary Issue. This paper is dedicated to Jacopo Tomasi. I learned much of the difficult art of transforming complex problems into simple models after reading his early works on solvation energy.  相似文献   

15.
The solubilities of water in each of the three binary mixtures benzene-carbon tetrachloride, benzene-cyclohexane, and carbon tetrachloride-cyclohexane were determined as a function of solvent composition at 25°C. It was found that, as with the pure solvents, water in the 0.50 mole fraction binary mixtures of these solvents obeyed Henry's law up to saturation. The experimentally determined solubilities were converted to Henry's law constants of water for the entire range of solvent compositions. These values for the Henry's law constants were compared with theoretically calculated values. The comparisons indicated that water in the benzene-cyclohexane and in the benzene-carbon tetrachloride mixtures was preferentially solvated by benzene. Preferential solvation of water was not indicated for the carbon tetrachloride-cyclohexane mixtures.  相似文献   

16.
Mixtures of organic solvents are often used as membrane mimetics in structure determination of transmembrane proteins by solution NMR; however, the mechanism through which these isotropic solvents mimic the anisotropic environment of cell membranes is not known. Here, we use molecular dynamics simulations to study the solvation thermodynamics of the c-subunit of Escherichia coli F1F0 ATP synthase in membrane mimetic mixtures of methanol, chloroform, and water with varying fractions of components as well as in lipid bilayers. We show that the protein induces a local phase separation of the solvent components into hydrophobic and hydrophilic layers, which provides the anisotropic solvation environment to stabilize the amphiphilic peptide. The extent of this effect varies with solvent composition and is most pronounced in the ternary methanol-chloroform-water mixtures. Analysis of the solvent structure, including the local mole fraction, density profiles, and pair distribution functions, reveals considerable variation among solvent mixtures in the solvation environment surrounding the hydrophobic transmembrane region of the protein. Hydrogen bond analysis indicates that this is primarily driven by the hydrogen-bonding propensity of the essential Asp(61) residue. The impact of the latter on the conformational stability of the solvated protein is discussed. Comparison with the simulations in explicit all-atom models of lipid bilayer indicates a higher flexibility and reduced structural integrity of the membrane mimetic solvated c-subunit. This was particularly true for the deprotonated form of the protein and found to be linked to solvent stabilization of the charged Asp(61).  相似文献   

17.
把二元溶液的过剩内能(excess energy)分成溶剂-溶剂、溶剂-溶质及溶质-溶质相互作用部分。利用集团展开方法给出了二元溶液在正则系综的配分函数的表达式,利用该表达式得到了溶质的偏摩尔内能(partial molar energy)和偏摩尔熵(partial molar entropy)的表达式。在无限稀溶液情形,过剩偏摩尔内能的溶剂-溶剂部分又称重组织内能(reorganization energy),它反映了溶质存在时对其周围溶剂分子之间的相互作用能的影响。研究表明,在溶质的粒子数密度相对较大时,溶质分子之间的相互作用将影响过剩偏摩尔内能的溶剂-溶剂部分,对于稀溶液,过剩偏摩尔内能的溶剂-溶剂部分与溶质的摩尔分数成线性关系。对低密度二元溶液,溶质的过剩偏摩尔内能和过剩偏摩尔熵也与溶质的摩尔分数成线性关系。  相似文献   

18.
The COSMO cluster-continuum (CCC) solvation model is introduced for the calculation of standard Gibbs solvation energies of protons. The solvation sphere of the proton is divided into an inner proton-solvent cluster with covalent interactions and an outer solvation sphere that interacts electrostatically with the cluster. Thus, the solvation of the proton is divided into two steps that are calculated separately: 1) The interaction of the proton with one or more solvent molecules is calculated in the gas phase with high-level quantum-chemical methods (modified G3 method). 2) The Gibbs solvation energy of the proton-solvent cluster is calculated by using the conductor-like screening model (COSMO). For every solvent, the solvation of the proton in at least two (and up to 11) proton-solvent clusters was calculated. The resulting Gibbs solvation energies of the proton were weighted by using Boltzmann statistics. The model was evaluated for the calculation of Gibbs solvation energies by using experimental data of water, MeCN, and DMSO as a reference. Allowing structural relaxation of the proton-solvent clusters and the use of structurally relaxed Gibbs solvation energies improved the accordance with experimental data especially for larger clusters. This variation is denoted as the relaxed COSMO cluster-continuum (rCCC) model, for which we estimate a 1σ error bar of 10 kJ mol(-1) . Gibbs solvation energies of protons in the following representative solvents were calculated: Water, acetonitrile, sulfur dioxide, dimethyl sulfoxide, benzene, diethyl ether, methylene chloride, 1,2-dichloroethane, sulfuric acid, fluorosulfonic acid, and hydrogen fluoride. The obtained values are absolute chemical standard potentials of the proton (pH=0 in this solvent). They are used to anchor the individual solvent specific acidity (pH) scales to our recently introduced absolute acidity scale.  相似文献   

19.
The charge transfer (CT) band maximum of N-alkyl pyridinium iodide (NAPI) has been studied as a function of the composition of binary mixed dipolar aprotic solvents. The deviation from linearity of the energy maximum (E12) and the mole fraction (of a component solvent) plot is explained as due to a preferential solvation by the more polar cosolvent in the binary mixture. The extent of preferential solvation has been observed to vary with the composition, the maximum being towards the less-polar end. The role of hydrogen bond donating ability of a solvent in preferential solvation is discussed.  相似文献   

20.
赵扬  王键吉  轩小朋  卓克垒 《化学学报》2006,64(21):2145-2150
利用13C NMR光谱技术研究了Li在碳酸丙烯酯(PC)+N,N-二甲基甲酰胺(DMF)混合溶剂中的优先溶剂化现象. 根据溶剂分子中碳原子的化学位移随锂盐浓度的变化关系, 确定了与Li发生配位的原子. 碳原子的配位位移值随混合溶剂组成的变化关系表明, 在LiClO4+PC+DMF混合物中, DMF分子对Li的溶剂化作用较PC分子强. 定量计算得到, 在n(PC)∶n(DMF)=1∶1(摩尔比)的混合溶剂中, PC与DMF分子数在Li第一溶剂化层中的比率为0.12, 说明Li优先被DMF分子溶剂化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号