首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different ionic liquids are investigated via atomistic molecular dynamics simulations using the force field of Lopes and PAdua (J. Phys. Chem. B 2006, 110, 19586). In particular, the 1-ethyl-3-methylimidazolium cation EMIM+ is studied in the presence of three different anions, namely, chloride Cl-, tetrafluoroborate BF(4)(-), and bis((trifluoromethyl)sulfonyly)imide TF2N-. In the focus of the present study are the static distributions of anions and cations around a cation as a function of anion size. It is found that the preferred positions of the anions change from being close to the imidazolium hydrogens to being above and below the imidazolium rings. Lifetimes of hydrogen bonds are calculated and found to be of the same order of magnitude as those of pure liquid water and of some small primary alcohols. Three kinds of short-range cation-cation orderings are studied, among which the offset stacking dominates in all of the investigated ionic liquids. The offset stacking becomes weaker from [EMIM][Cl] to [EMIM][BF4] to [EMIM][TF2N]. Further investigation of the dynamical behavior reveals that cations in [EMIM][TF2N] have a slower tumbling motion compared with those in [EMIM][Cl] and [EMIM][BF4] and that pure diffusive behavior can be observed after 1.5 ns for all three systems at temperatures 90 K above the corresponding melting temperatures.  相似文献   

2.
As a novel substituting solvent for organic solvents, low-temperature ionic liquids have attracted much attention as good media in organic synthesis and other chemical processes. Better understanding of physical properties of ionic liquids are very helpful in exploring reaction mechanisms and controlling reaction outputs. This review summarises current studies on several physical properties (melting point, vapor pressure and stability, polarity, miscibility, density, viscosity) that are important for organic reactions.  相似文献   

3.
A new zwitterion containing 1,1,3,3-tetramethylguanidine was synthesized using a simple method, and the physicochemical properties as well as the crystal structure of the compound were also studied. Two new acidic ionic liquids (ILs) were synthesized using the zwitterion as the precursor and the physicochemical properties including density, viscosity, thermal property, and acidic scale of the ILs were investigated. A density functional theory investigation of the geometrical structures and electronic properties of the guanidinium triflate ionic liquid was also presented for better understanding the new ILs.  相似文献   

4.
The past two decades have seen the advent of a new class of solvents with unique properties, referred to as “Ionic Liquids”. This term describes low-melting organic salts, which open a window for chemical processes in ionic environments near room temperature. A molecular-based understanding of their properties is crucial for a rational design for applications. An important prerequisite is the characterization and understanding of their structure and dynamics. Application of NMR techniques to characterize ionic liquids has rendered many unique and valuable insights on these subjects. Here, recent highlights and typical applications are elucidated along with the advantages and limitations of the various techniques.  相似文献   

5.
6.
A series of ionic liquids (ILs) based on nitrile-functionalized imidazolium, pyridinium, and quaternary ammonium as cations and chlorides and tetrafluoroborate, hexafluorophosphate, dicyanamide, and bis(trifluoromethanesulfonyl)imide as anions have been prepared and characterized. The physicochemical properties such as spectroscopic, thermal, solubility, surface, electrochemical, tribological, and toxic properties were comparatively studied. The results showed that the incorporation of a CN group to cations could result in remarkable changes in these properties. The reason resulting in such remarkable differences in the properties may be attributed to the conformational changes in the imidazolium groups caused by the interaction between the CN group with other neighboring cations or anions and the enhancement in hydrogen-bonding interactions due to the incorporation of a CN group.  相似文献   

7.
A simple method to predict the densities of a range of ionic liquids from their surface tensions, and vice versa, using a surface-tension-weighted molar volume, the parachor, is reported. The parachors of ionic liquids containing 1-alkyl-3-methylimidazolium cations were determined experimentally, but were also calculated directly from their structural compositions using existing parachor contribution data for neutral compounds. The calculated and experimentally determined parachors were remarkably similar, and the latter data were subsequently employed to predict the densities and surface tensions of the investigated ionic liquids. Using a similar approach, the molar refractions of ionic liquids were determined experimentally, as well as calculated using existing molar refraction contribution data for uncharged compounds. The calculated molar refraction data were employed to predict the refractive indices of the ionic liquids from their surface tensions. The errors involved in the refractive index predictions were much higher than the analogous predictions employing the parachor, but nevertheless demonstrated the potential for developing parachor and molar refraction contribution data for ions as tools to predict ionic liquid physical properties.  相似文献   

8.
A series of alkyltrioctylphosphonium chloride ionic liquids, prepared from trioctylphosphine, and the respective 1-chloroalkane (C(n)H(2n+1)Cl), where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14, is presented. The cynosure of this work is the manner in which the variable chain length impacts the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR correlations and group contribution methods. We present the first example of an empirical alternation effect for ionic liquids.  相似文献   

9.
10.
In continuation of recent work on the dielectric response of imidazolium-based ionic liquids (ILs) (J. Phys. Chem. B, 2006, 110, 12682), we report on the effect of cation variation on the frequency-dependent dielectric permittivity up to 20 GHz of ionic liquids. The salts are comprised of pyrrolidinium, pyridinium, tetraalkylammonium, and triethylsulfonium cations combined with the bis-((trifluoromethyl)sulfonyl)imide anion. The dielectric spectra resemble those observed for imidazolium salts with the same anion. In all cases, the major contribution results from a diffusive low-frequency response on the time scale of several 100 ps, which shows a broadly distributed kinetics similar to that of spatially heterogeneous states in supercooled and glassy systems rather than that observed in fluid systems. There is evidence for a weak secondary process near 10-20 ps. Perhaps the most interesting difference to imidazolium salts is founded in the missing portions of the spectra due to processes beyond the upper cutoff frequency of 20 GHz. These are lower than that observed for imidazolium-based salts and seem to vanish for tetraalkylammonium and triethylsulfonium salts. As for imidazolium salts, the extrapolated static dielectric constants are on the order of epsilon(S) congruent with 10-13, classifying these ILs as solvents of moderate polarity.  相似文献   

11.
Electronic absorption, steady-state fluorescence spectra and X-ray diffraction patterns for several pyridinium-based ionic liquids (ILs) (1-butyl-3-methylpyridinium tetrafluoroborate, 1-butyl-4-methylpyridinium tetrafluoroborate, 1-octyl-3-methylpyridinium tetrafluoroborate and 1-butyl-3-methylpyridinium dicyanamide) have been obtained. A systematic study has been performed for different ILs in terms of structural characteristics obtaining remarkable results. The present characterisation, centre of attention in theoretical and practical fields, leads to understand the complex behaviour of such compounds and is an essential step for their potential development as new solvents in extended applications.  相似文献   

12.
Electronic structure studies of tetrazolium-based ionic liquids   总被引:1,自引:0,他引:1  
New energetic ionic liquids are investigated as potential high energy density materials. Ionic liquids are composed of large, charge-diffuse cations, coupled with various (usually oxygen containing) anions. In this work, calculations have been performed on the tetrazolium cation with a variety of substituents. Density functional theory (DFT) with the B3LYP functional, using the 6-311G(d,p) basis set was used to optimize geometries. Improved treatment of dynamic electron correlation was obtained using second-order perturbation theory (MP2). Heats of formation of the cation with different substituent groups were calculated using isodesmic reactions and Gaussian-2 calculations on the reactants. The cation was paired with oxygen rich anions ClO4-, NO3-, or N(NO2)2- and those structures were optimized using both DFT and MP2. The reaction pathway for proton transfer from the cation to the anion was investigated.  相似文献   

13.
《Tetrahedron: Asymmetry》2006,17(13):2028-2033
A novel class of chiral-amine-functionalized ionic liquids (CAFILs) has been synthesized efficiently from natural amino acids, and their structures have been determined by spectroscopic analysis and low temperature X-ray diffraction analysis. The CAFILs have been characterized by physical properties such as melting point, glass transition temperature, thermal degradation and specific rotation. NMR measurements indicate that the CAFILs may be promising alternatives in the field of chiral discrimination.  相似文献   

14.
Novel trigeminal tricationic ionic liquids (TTILs) have been successfully synthesized in high yields by means of Menschutkin quaternization via an S(N)1 mechanism. This reaction presents a new convenient method for transforming glycerol into multifunctional compounds. The physical properties of a series of TTILs were characterized by using a variety of techniques. The prepared salts were tested for antimicrobial activity. Electrochemical characterization of TTILs was also performed, which allowed the estimation of the conductivity of these new compounds, to establish their electrochemical stability window and capacitance properties over a wide range of temperatures. A good correlation of the physical properties of TTILs with capacitance values was observed.  相似文献   

15.
Synthesis and properties of chiral ammonium-based ionic liquids   总被引:1,自引:0,他引:1  
New chiral ammonium-based ionic liquids containing the (1R,2S,5R)-(-)-menthyl group can be easily and efficiently prepared under ambient conditions. The preparation and characterization of trialkyl[(1R,2S,5R)-(-)-menthoxymethyl]ammonium salts is reported. The salts have been demonstrated to be air- and moisture-stable under ambient conditions and can be readily used in a variety of standard experimental procedures. The single-crystal X-ray structure of butyldimethyl[(1R,2S,5R)-(-)-menthoxymethyl]ammonium chloride has been determined. The chiral, room-temperature ionic liquids have been characterized by physical properties such as specific rotation, density, viscosity, thermal degradation, and glass transition temperature. Trialkyl[(1R,2S,5R)-(-)-menthoxymethyl]ammonium chloride prototype ionic liquids have also been found to exhibit strong antimicrobial and high antielectrostatic activities.  相似文献   

16.
A combined experimental and molecular dynamics study has been performed on the following pyridinium-based ionic liquids: 1-n-hexyl-3-methylpyridinium bis(trifluoromethanesulfonyl)imide ([hmpy][Tf(2)N]), 1-n-octyl-3-methylpyridinium bis(trifluoromethanesulfonyl)imide ([ompy][Tf(2)N]), and 1-n-hexyl-3,5-dimethylpyridinium bis(trifluoromethanesulfonyl)imide ([hdmpy][Tf(2)N]). Pulsed field gradient nuclear magnetic resonance spectroscopy was used to determine the self-diffusivities of the individual cations and anions as a function of temperature. Experimental self-diffusivities range from 10(-11) to 10(-10) m(2)/s. Activation energies for diffusion are 44-49 kJ/mol. A classical force field was developed for these compounds, and molecular dynamics simulations were performed to compute dynamic as well as thermodynamic properties. Evidence of glassy dynamics was found, preventing accurate determination of self-diffusivities over molecular dynamics time scales. Volumetric properties such as density, isothermal compressibility, and volumetric expansivity agree well with experiment. Simulated heat capacities are within 2% of experimental values.  相似文献   

17.
The thermophysical properties of hydroxyl ammonium ionic liquids: density ρ, T = (293.15 to 363.15) K; dynamic viscosity η, T = (298.2 to 348.2) K; and refractive indices nD, T = (293.15 to 333.15) K have been measured. The coefficients of thermal expansion α, values were calculated from the experimental density results using an empirical correlation for T = (293.15 to 363.15) K. The variation of volume expansion of ionic liquids studied was found to be independent of temperature within the range covered in the present work. The thermal decomposition temperature ‘Td’ for all the six hydroxyl ammonium ionic liquids is also investigated using thermogravimetric analyzer (TGA).  相似文献   

18.
Using the single tryptophan residue in the sweet protein monellin as a spectroscopic handle, we show the extreme thermodynamic stabilization offered by an ionic liquid; T(un) approximately 105 degrees C in [C4mpy][Tf2N] compared to 40 degrees C in bulk water.  相似文献   

19.
In recent years, the designer nature of ionic liquids (ILs) has driven their exploration and exploitation in countless fields among the physical and chemical sciences. A fair measure of the tremendous attention placed on these fluids has been attributed to their inherent designer nature. And yet, there are relatively few examples of reviews that emphasize this vital aspect in an exhaustive or meaningful way. In this critical review, we systematically survey the physicochemical properties of the collective library of ether- and alcohol-functionalized ILs, highlighting the impact of ionic structure on features such as viscosity, phase behavior/transitions, density, thermostability, electrochemical properties, and polarity (e.g. hydrophilicity, hydrogen bonding capability). In the latter portions of this review, we emphasize the attractive applications of these functionalized ILs across a range of disciplines, including their use as electrolytes or functional fluids for electrochemistry, extractions, biphasic systems, gas separations, carbon capture, carbohydrate dissolution (particularly, the (ligno)celluloses), polymer chemistry, antimicrobial and antielectrostatic agents, organic synthesis, biomolecular stabilization and activation, and nanoscience. Finally, this review discusses anion-functionalized ILs, including sulfur- and oxygen-functionalized analogs, as well as choline-based deep eutectic solvents (DESs), an emerging class of fluids which can be sensibly categorized as semi-molecular cousins to the IL. Finally, the toxicity and biodegradability of ether- and alcohol-functionalized ILs are discussed and cautiously evaluated in light of recent reports. By carefully summarizing literature examples on the properties and applications of oxy-functional designer ILs up till now, it is our intent that this review offers a barometer for gauging future advances in the field as well as a trigger to spur further contemplation of these seemingly inexhaustible and--relative to their potential--virtually untouched fluids. It is abundantly clear that these remarkable fluidic materials are here to stay, just as certain design rules are slowly beginning to emerge. However, in fairness, serendipity also still plays an undeniable role, highlighting the need for both expanded in silico studies and a beacon to attract bright, young researchers to the field (406 references).  相似文献   

20.
Taking the molecular ionic liquid 1-ethyl-3-methylimidazolium triflate as a reference system, the size and time dependence of molecular dynamics simulation studies is analyzed in a systematic way. Based on an all atom force field, trajectories of 70 ns length, covering samples of 8-2000 ion pairs, were generated and analyzed in terms of structure as well as single particle and collective dynamics. Although 50 ion pairs seemed sufficient for structure, at least 500 ion pairs were needed for the correct handling of dynamics. For larger systems a linear regime is found, i.e., the respective dynamical properties are a linear function of the inverse box length. In case of translational diffusion coefficients, this linear relation can be rationalised in hydrodynamic terms. The respective formula is essentially determined by viscosity and the inverse box length. Concerning the time dependence, consistent dynamical properties required a time period of 20-30 ns. Nevertheless, size dependence dominates time dependence and has to be primarily addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号