首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Microphase separation and the resulting morphology of asymmetric diblock copolymers of poly(ε-caprolactone) (PCL) in thin films have been investigated by atomic force microscopy. Copolymers consisted of a short block of PCL (Mn∼2500-4500 g/mole) and a longer second block of poly(methyl methacrylate) (PMMA), poly(styrene) (PS) or poly(cyclohexene oxide) (PCHO). Tendency for microphase separation above the glass transition temperature of the second block (PMMA, PS or PCHO) resulted in a pitted morphology on the surface of the thin films. This tendency was strongest for PMMA and weakest for PCHO. The presence of up to 54% PMMA homopolymer in PCL-PMMA block copolymer did not prevent the formation of such pitted morphology on the surface. The effect of the chemical structure of the second block and the possible orientations of the block copolymer molecules in thin films are discussed.  相似文献   

2.
Three different, complementary soft lithographic approaches for the fabrication of chemical patterns on ultrathin polystyrene-block-poly(tert-butyl acrylate) (PS690-b-PtBA1210) films are discussed. Central to the methodology is the previously introduced reactive PS690-b-PtBA1210 platform that allows one to covalently graft (bio)molecules via robust amide linkages in high densities on flat, as well as on structured, surfaces. As shown in this paper, the combination of the polymer-based platform and reactive microcontact printing (μCP) patterning approaches allows one to obtain patterns of (bio)molecules with (sub)micrometer feature sizes. The μCP approaches comprise: (A) the direct transfer of functional (bio)molecules from an oxidized elastomeric stamp to hydrolyzed and N-hydroxysuccinimide (NHS) activated PS690-b-PtBA1210; (B) the transfer of a passivating poly(ethylene glycol) layer to hydrolyzed and NHS-activated PS690-b-PtBA1210 followed by wet chemical grafting of functional moieties; (C) the local hydrolysis of the PtBA skin layer with trifluoroacetic acid (TFA), followed by NHS activation and wet chemical derivatization. The applicability and the versatility of the combination of the polymer thin film-based platform and soft lithographic methodologies for patterning biologically relevant molecules is demonstrated for polyamidoamine (PAMAM) dendrimers, different proteins, as well as probe DNA. The successful hybridization of target DNA and the immobilization of fibronectin in micropatterns show that ultrahigh density patterns for micro- and nano-arrays, as well as for studies of cell-surface interactions, can be conveniently fabricated based on these approaches and platforms.  相似文献   

3.
The self-assembly behavior of siloxane based side chain liquid crystalline block copolymer thin films are investigated via grazing incidence small angle X-ray scattering and atomic force microscopy. The as-spun films displayed polystyrene cylinders perpendicular to the substrate and the cylinders reoriented parallel to the surface after thermal annealing. The morphology observed in the as-spun films is resultant from the orientation of the smectic LC mesophase relative to the substrate. Annealing above both the polystyrene glass transition temperature and the smectic to isotropic transition temperature eliminates the influence of the LC phase, leading to a reorientation of the morphology that minimizes the interfacial energy of the system. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3263–3266, 2007  相似文献   

4.
Thin films of asymmetric poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) block copolymers are studied by means of in situ grazing-incidence small-angle X-ray scattering (GISAXS) during solvent vapor annealing in tetrahydrofuran, a solvent selective for the PS majority block of the copolymer. Upon swelling, PS-b-P4VP block copolymers form hexagonal arrays of spherical P4VP microdomains in a PS matrix in films 7–9 layers thick. Deswelling the films induces a transition from hexagonal to face-centered orthorhombic (fco) symmetry, which is stable only at ∼7 layers of spherical microdomains. Dry films show co-existing hexagonal and orthorhombic symmetries when the solvent is removed slowly, whereas instantaneous solvent removal suppresses the fco structure, resulting in films with only hexagonal structure. The in-plane order of microdomains is significantly deteriorated in dry films independent of the solvent removal rate.Spherical block copolymer microdomains are known to undergo a transition from hexagonal to orthorhombic packing in isothermally annealed thin films when the number of sphere layers is increased from 4 to 5. In this paper, in situ GISAXS experiments reveal that a similar transition occurs during solvent vapor annealing in a selective solvent. Interestingly, the transition from hexagonal to orthorhombic packing of spheres occurs as solvent is removed from a thin block copolymer film. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 331–338  相似文献   

5.
Atomic force microscopy (AFM) is used to study the phase separation process occurring in block copolymers in the solid state. The simultaneous measurement of the amplitude and the phase of the oscillating cantilever in the tapping mode operation provides the surface topography along with the cartography of the microdomains of different mechanical properties. This technique thus allows to characterize the size and shape of those microdomains and their organization at the surface (e.g. cubic lattice spheres, hexagonal lattice of cylinders, or lamellae). In this study, a series of symmetric triblock copolymers made of a inner elastomeric sequence (poly(butadiene) or poly(alkylacrylate)) and two outer thermoplastic sequences (poly(methylmethacrylate)) is analyzed by AFM in the tapping mode. The microphase separation and their morphology are essential factors for the potential of these materials as a new class of thermoplastic elastomers. Special attention is paid to the control of the surface morphology, as observed by AFM, by the molecular structure of the copolymers (volume ratio of the sequences, molecular weight, length of the alkyl side group) and the experimental conditions used for the sample preparation. The molecular structure of the chains is completely controlled by the synthesis, which relies on the sequential living anionic polymerization of the comonomers. The copolymers are analyzed as solvent-cast films, whose characteristics depend on the solvent used and the annealing conditions. The surface arrangement of the phase-separated elastomeric and thermoplastic microdomains observed on the AFM phase images is discussed on the basis of quantitative information provided by the statistical analysis by Fourier transform and grain size distribution calculations.  相似文献   

6.
A controlled co‐solvent vapor annealing system was designed and constructed to investigate the effects of solvent vapor activity during the rapid ambient quenching process on the morphology of a cylinder‐forming poly(styrene)‐b‐poly (ethylene oxide) (PS‐PEO) annealed in toluene and water vapor. A phase transformation from cylinders in the bulk to close‐packed spheres in swollen thin films occurred, which was reversed upon quenching with dry nitrogen. Quenching with humidified nitrogen preserved the spherical morphology but could significantly alter domain spacing and reduce long‐range order in the dried films under some circumstances. Specifically, long‐range order in the quenched films was found to decrease as the quenching humidity decreased from the humidity used during annealing, and the best long‐range order was obtained when the humidity remained consistent throughout both annealing and quenching. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1125–1130  相似文献   

7.
Lamellae (symmetric) forming polystyrene‐b‐poly(4‐vinylpyridine) (PS‐b‐P4VP) block copolymers (BCPs) were used to produce nanostructured thin films by solvent (toluene) casting (spin‐coating) onto silicon substrates. As expected, strong micellization of PS‐P4VP in toluene results in poorly ordered hexagonally structures films. Following deposition the films were solvent annealed in various solvents and mixtures thereof. A range of both morphologies including micelle and microphase separated structures were observed. It was found that nanostructures typical of films of regular thickness (across the substrate) and demonstrating microphase separation occurred only for relatively few solvents and mixtures. The data demonstrate that simple models of solvent annealing based on swelling of the polymer promoting higher polymer chain mobility are not appropriate and more careful rationalization is required to understand these data. Analysis suggests that regular phase separated films can only be achieved when the copolymer Hildebrand solubility parameter is very similar to the value of the solvent. It is suggested that the solvent anneal method used is best considered as a liquid phase technique rather than a vapor phase method. The results show that solvent annealing methods can be a very powerful means to control structure and in some circumstances dominate other factors such as surface chemistry and surface energies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Reversible addition fragmentation chain transfer (RAFT) polymerization of cholesteryl acrylate (ChA) was conducted using S-1-dodecyl-S′-(α,α′-dimethyl-α′′-acetic acid)trithiocarbonate as CTA and AIBN as initiator in toluene at 80 °C. The polymerization was investigated at two different CTA concentrations (0.025 and 0.040 M). Polymerization of ChA with CTA concentration of 0.040 M proceeds in a controlled/living manner as evidenced by linear increase of the molecular weight with conversion and narrow polymer polydispersity (PDI < 1.2). With lower initial CTA concentration, namely 0.025 M, although poly(cholesteryl acrylate) (PChA) exhibiting narrow molecular weight distributions could be synthesized, the polymerization showed relatively low control with many termination products. Chain extension polymerizations were performed starting from either the PChA or the polystyrene (PS) block, and well-defined copolymers based on ChA and styrene were prepared. Thermal properties of PChA and PS-b-PChA copolymer were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and the results showed that both PChA and PS-b-PChA are amorphous polymers. PChA begins to decompose at ca. 218 °C with maximum weight loss rate at 351 °C, while PS-b-PChA shows double weight loss rate peaks located at 345 and 415 °C, respectively.  相似文献   

9.
We introduce a simple method to create nanosized, ordered, and highly luminescent thin film of Eu (III)–block copolymer complex. Micelles of polystyrene–block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) in P4VP‐selective solvents (ethanol/N,N‐dimethylformamide (DMF) mixture) serve as nanoreactors for the synthesis of Eu(III)–block copolymer complex with the presence of 1,10‐phenanthroline (Phen) as cooperative ligand. The resulted quaternary complexes were characterized by FT‐IR spectra, 15N NMR spectra, and elemental analysis, indicative of a composition of Eu(III)–(PS‐b‐P4VP)–Phen–5DMF. Atomic force microscopy and transmission electron microscopy investigations reveal that the Eu(III)–(PS‐b‐P4VP)–Phen–5DMF complex can self‐organize into hexagonally ordered thin films when dip‐coated from the solution onto silicon or silica glass substrates. Such ordered thin films can emit red fluorescence of Eu3+ with strong intensity and long lifetime. This method can be easily extended to prepare other ordered luminescent rare earth–polymer complexes thin films. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2181–2189, 2005  相似文献   

10.
Creating perpendicular alignment in lamellar block copolymer (BCP) systems has considerable industrial and commercial significance, most importantly for generating nanowire structures in electronic devices. In general, these lamellar systems require careful interface engineering to obtain vertical orientation of the blocks. To avoid the strong preferential adsorption of one block to either the substrate or the polymer/air interface, the surface must be “neutralized” by chemical brushes or external forces, for example, solvent fields. Reported here is a stepwise thermo/solvent annealing process allowing the formation of perpendicular domains of polystyrene‐b‐polyethylene oxide lamellar structures while avoiding brush or other surface modifications. This BCP has a relatively small minimum feature size and can be used to generate substrate patterns for use in fabrication of nanowire electronic device structures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

11.
The surface chemical structure development in solution-cast styrene(S)/butadiene(B) block copolymer films as a function of solvent evaporation time was investigated using sum frequency generation vibrational spectroscopy(SFG).The surface structure formation of the styrene(S)/butadien(B) block copolymer(30 wt% PS) films during the solution-to-film process was found to be controlled mainly by dynamic factors,such as the mobility of the PB block in solution.For SB diblock copolymers,a pure PB surface layer was formed only when the film was cast by dilute toluene solution.With increasing concentration of casting solution,PB and PS components were found to coexist on the film surface,and the morphology of the PB component on the film surface changed from cylindrical rods to spheres.For SBS triblock copolymers,a small amount of PS component existed on the surface even if the film was cast by 1.0 wt% toluene solution.In addition,PS components at the outermost layer of the film increased and the length of PB cylindrical rods on the surface decreased with increasing concentration of casting solution.  相似文献   

12.
Solvent vapor annealing (SVA) is one route to prepare block copolymer (BCP) thin films with long‐range lateral ordering. The lattice defects in the spin‐coated BCP thin film can be effectively and rapidly reduced using SVA. The solvent evaporation after annealing was shown to have a significant impact on the in‐plane ordering of BCP microdomains. However, the effect of solvent evaporation on the out‐of‐plane defects in BCPs has not been considered. Using grazing‐incidence x‐ray scattering, the morphology evolution of lamellae‐forming poly(2‐vinlypyridine)‐b‐polystyrene‐b‐poly(2vinylpyridine) triblock copolymers, having lamellar microdomains oriented normal to substrate surface during SVA, was studied in this work. A micelle to lamellae transformation was observed during solvent uptake. The influence of solvent swelling ratio and solvent removal rate on both the in‐plane and out‐of‐plane defect density was studied. It shows that there is a trade‐off between the in‐plane and out‐of‐plane defect densities during solvent evaporation. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 980–989  相似文献   

13.
We have completely deconvoluted multiple ferroelectric-to-paraelectric phase transitions of a VDF/TrFE copolymer often observed on DSC by consecutive annealing below the Curie transition temperature and obtained three clear endothermic peaks resolved well from each other. We could also increase the Curie transition temperature by using the consecutive annealing performed in the ferroelectric state. Annealing time, as well as annealing temperature, was found to affect the Curie transition behavior significantly. Each ferroelectric crystalline phase was characterized by IR, Raman scattering, x-ray diffraction, and DSC measurements. The ferroelectric phase, having higher Curie transition temperature, has been found to have more trans sequences and less gauche defects and to require larger thermal energy for the Curie transition. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Poly(vinyl trimethylsilane) (PVTMS) and block copolymers of vinyl trimethylsilane with isoprene were synthesized by anionic polymerization and characterized. The synthesized pure PVTMS has properties similar to a reference material produced about two decades ago and can be used for thin film composite membrane formation. Even at low isoprene content the block copolymers have improved film forming properties compared to the pure PVTMS. However, the presence of the isoprene units in the block copolymers leads to a decrease of the gas permeability but does not affect the selectivity of the membranes (α(O2/N2) = 3.9).  相似文献   

15.
A new biodegradable, water‐soluble macromonomer based on the commercial hyperbranched polyester Boltorn®H20 has been synthesized through the use of click chemistry. The macromonomer was developed with the aim of being injected with a comacromonomer, poly(ethylene glycol) (PEG) diacrylate, for in situ copolymerization to form biodegradable polymer hydrogels. Copolymer hydrogels were prepared from the macromonomer and PEG diacrylate (FW 700) by free radical copolymerization. A degree of phase separation of the hydrogels was observed during polymerization and with increasing incorporation of the Boltorn macromonomer an increasing tendency for the formation of macropores was observed. The swelling ratios of the gels in water and phosphate buffered saline solution, PBS, all increase with increasing Boltorn macromonomer concentration, as did the penetrant diffusion coefficients and the degradation rate in PBS. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Improvement in oxygen gas barrier properties of polyester/polyamide blends used in packaging industry is the main objective of the present study. For this purpose poly(ethylene terephthalate) (PET)/poly(m-xylene adipamide) (nylon-MXD6) (95/5 w/w) and poly(ethylene terephthalate-co-isophthalate) copolymer (PETI)/MXD6 (95/5 w/w) blends have been prepared with a PET copolymer which consists of 5 wt.% sodium sulfonated isophthalate (PET-co-5SIPA) as compatibilizer and a carboxyl-terminated polybutadiene (CTPB) as filler by using a co-rotating intermeshing twin screw extruder. The effects of chemical architecture and morphology on oxygen gas permeability and processability were analyzed by using a range of characterization techniques including differential scanning calorimetry (DSC), scanning electron microscopy (SEM), oxygen gas permeability analyzer, and a special computer controlled uniaxial stretching system that provides real-time measurement of true stress, true strain and birefringence. The morphological analysis revealed that PET-co-5SIPA was an effective compatibilizer for both PET/MXD6 and PETI/MXD6 blends. DSC analysis and spectral-birefringence technique were used to understand the thermal and stress-induced crystallization behavior of the blends. Morphological analysis of the films after biaxial stretching indicated that the spherical nylon phase was converted to 75 nm thick disks during stretching (aspect ratio L/W = 6) that creates a tortuous pathway for oxygen ingress. Stretching enhanced the barrier properties of PET/MXD6 and PETI/MXD6 blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号