首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3,3,4,4-benzophenonetetracarboxylic dianhydride (4,4-carbonyldiphthalic anhydride) (1) was reacted with l-phenylalanine (2) in a mixture of acetic acid and pyridine (3:2) and the resulting imide-acid [N,N-(4,4-carbonyldiphthaloyl)-bis-l-phenylalanine diacid] (4) was obtained in high yield. The compound (4) was converted to the N,N-(4,4-carbonyldiphthaloyl)-bis-l-phenylalanine diacid chloride (5) by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride (5) with several aromatic diamines such as 4,4-diaminodiphenyl methane (6a), 2,4-diaminotoluene (6b), 4,4-sulfonyldianiline (6c), p-phenylenediamine (6d), 4,4-diaminodiphenylether (6e), m-phenylenediamine (6f), benzidine (6g) and 2,6-diaminopyridine (6h) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o-cresol. The polymerization reactions proceeded rapidly, compared with the conventional solution polycondensation, and was completed within 7 min, producing a series of optically active poly(amide-imide)s with high yield and inherent viscosity of 0.22-0.52 dl/g. All of the above polymers were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of this optically active poly(amide-imide)s are reported.  相似文献   

2.
Chiral conjugated polymers P-1 and P-2 were synthesized by the polymerization of (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((R)-M-1) and (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((S)-M-1) with 2,5-bis(4-vinylphenyl)-1,3,4-oxadiazole (M-2) under Pd-catalyzed Heck coupling reaction, respectively. Both monomers and polymers were analysed by NMR, MS, FT-IR, UV, DSC-TG, fluorescent spectroscopy, GPC and CD spectra. The chiral conjugated polymers exhibit strong Cotton effect in their circular dichroism (CD) spectra indicating a high rigidity of polymer backbone. CD spectra of polymers P-1 and P-2 are almost identical and have opposite signs for their position. These polymers have strong blue fluorescence.  相似文献   

3.
(R)-4-Ethyl-2-(1,1-dimethylpropyl)-2-oxazoline (1) and (S)-4-tert-butyl-2-(1,1-dimethylbutyl)-2-oxazoline (2) were synthesized in two steps from the corresponding enantiopure amino alcohols and acid chlorides in a total yield of 95% and 72%, respectively. (S)-2-(1-Adamantyl-1-methylethyl)-4-isobutyl-2-oxazoline (3) was obtained from adamantyl bromide and l-leucinol in five steps in a total yield of 82%. Reactions of oxazolines 13 with Pd(OAc)2 in AcOH or CH2Cl2 followed by treatment with LiCl afforded the corresponding μ-Cl dimeric cyclopalladated complexes 15, 17, and 20 in good yield. Compounds 15, 17, and 20 reacted with PPh3 to furnish the corresponding mononuclear complexes 16, 19, and 21. The 31P NMR spectra of trans(N,P) adducts 16, 19, and 21 contained signals of two diastereomers in a ratio of ca. 1.3:1.  相似文献   

4.
Pyromellitic dianhydride (benzene-1,2,4,5-tetracarboxylic dianhydride) (1) was reacted with l-leucine (2) in a mixture of acetic acid and pyridine (3:2) and the resulting imide-acid [N,N-(pyromellitoyl)-bis-l-leucine diacid] (4) was obtained in quantitative yield. The compound (4) was converted to the N,N-(pyromellitoyl)-bis-l-leucine diacid chloride (5) by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride (5) with several aromatic diols such as phenol phthalein (6a), bisphenol-A (6b), 4,4-hydroquinone (6c), 1,8-dihydroxyanthraquinone (6d), 1,5-dihydroxy naphthalene (6e), 4,4-dihydroxy biphenyl (6f), and 2,4-dihydroxyacetophenone (6g) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o-cresol. The polymerization reactions proceeded rapidly and are completed within 10 min, producing a series of optically active poly(ester-imide)s (PEIs) with good yield and moderate inherent viscosity of 0.10-0.27 dl/g. All of the above polymers were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of these optically active PEIs are reported.  相似文献   

5.
Facile oxidative addition of SnCl4, MeSnCl3, and SnBr4 across Ir(I) and Rh(I) cyclooctadiene complexes resulted in the formation of the corresponding Ir-Sn and Rh-Sn heterobimetallic complexes. Treatment of SnCl4 with [Ir(COD)(μ-Cl)]2 and [Rh(COD)(μ-Cl)]2 afforded [Ir(COD)(μ-Cl)Cl(SnCl3)]2 (1) and [Rh(COD)(μ-Cl)Cl(SnCl3)]2 (2), respectively. Reaction of the organotin halide MeSnCl3 with [Ir(COD)(μ-Cl)]2 led to the formation of [Ir(COD)(μ-Cl)Cl(MeSnCl2)]2 (3). The reaction of SnBr4 to IrI and RhI precursors gave [Ir(COD)(μ-Br)Br(SnBr3)]2 (4) and [Rh(COD)(μ-Br)Br(SnBr3)]2 (5) respectively, which indicates halide exchange at post-oxidative addition stage. The structures of complexes 1-5 were confirmed by X-ray crystallography. A cis-addition of Sn-X bond across IrI/RhI is proposed from the analysis of the geometrical features of “X-M-Sn” triangular units in 1-5.  相似文献   

6.
Polycarbohydrate macromonomers with different degrees of polymerization (DP), that is, end-functionalized (1 → 6)-2,5-anhydro-3,4-di-O-ethyl-d-glucitols with 4-ethynylbenzoyl groups (macromonomer 2: DP = 6.6, and macromonomer 3: DP = 9.5) were synthesized. The copolymerizations of these macromonomers and phenylactylene (PA) were carried out in various molar ratios to give poly(phenylacetylene)s bearing a polycarbohydrate ionophore as the graft chain with various grafting rates, poly-(2x-co-PAy) and poly-(3x-co-PAy). These polymers showed split-type circular dichroism (CD) spectra in the long absorption region of the conjugated polymer backbones (280-500 nm). This indicated that poly-(2x-co-PAy) and poly-(3x-co-PAy) had predominantly one-handed helical conformations in the backbones. The CD spectral patterns of these polymers were inverted in the presence of metal cationic guest molecules. On the other hand, control experiments using poly(phenylacetylene)s bearing a monocarbohydrate (poly-(4x-co-PAy)) and metal cations did not show such a CD spectral inversion. These results clearly indicated that the chiroptical switching of the poly(phenylacetylene)s bearing polycarbohydrate ionophore was attributable to the host-guest complexation of the polycarbohydrate ionophore with metal cations.  相似文献   

7.
Iridium complexes containing quinoline-functionalized N-heterocyclic carbene (NHC) ligands have been synthesized by the transmetalation route from silver carbene precursors. The silver complexes undergo a facile reaction with [Ir(COD)Cl]2 (COD = 1,5-cyclooctadiene) to yield a series of carbene complexes [(NHC)Ir(COD)Cl] (NHC = 3-methyl-1-(8-quinolylmethyl)imidazole-2-ylidene (2a); 3-n-butyl-1-(8-quinolylmethyl)imidazole-2-ylidene (2b); 3-benzyl-1-(8-quinolylmethyl)imidazole-2-ylidene (2c); 1,3-di(8-quinolylmethyl)imidazole-2-ylidene (2d). The coordinated COD was replaced by carbon monoxide to yield the corresponding carbonyl species [(NHC)Ir(CO)2Cl] (3). Complexes 2 and 3 have been characterized by IR, ESI-MS, 1H and 13C NMR and elemental analyses. The molecular structures of complexes 2b and 2c have been confirmed by single-crystal X-ray diffraction. Two analogous Ir(I) complexes 5 and 6 with naphthalene-containing NHC have also been synthesized and characterized. These Ir(I) complexes in the current work have been proved to be active catalysts in the transfer hydrogenation of ketones to alcohols using 2-propanol as the hydrogen source.  相似文献   

8.
New donor–acceptor conjugated polymers (P1 and P2) containing a fused-ring dithienobenzothiadiazole (DT-BTD building block) were synthesized by using the Stille copolymerization method. The synthesized polymers were characterized by 1H NMR, GPC, and elemental analysis. The optical band gaps of the polymers were found to be 1.86 and 1.9 eV, respectively, as calculated from their film onset absorption edge. Upon annealing both produced a distinct shoulder peak in their film absorption spectra. The electrochemical studies of P1 and P2 revealed that the HOMO and LUMO energy levels of the polymer were −5.3, −5.1 eV, and −3.4, −3.2 eV, respectively. The polymers are thermally stable up to 250–350 °C.  相似文献   

9.
4,4-(Hexafluoroisopropylidene)-N,N-bis(phthaloyl-l-leucine-p-amidobenzoic acid) (2) was prepared from the reaction of 4,4-(hexafluoroisopropylidene)-N,N-bis(phthaloyl-l-leucine) diacid chloride with p-aminobenzoic acid. The direct polycondensation reaction of monomer (2) with p-phenylenediamine (2a), 4,4-diaminodiphenylsulfone (2b), 2,4-diaminotoluene (2c), 2,6-diaminopyridine (2d), m-phenylene diamine (2e), benzidine (2f), 4,4-diaminodiphenylether (2g) and 4,4-diaminodiphenyl methane (2h) was carried out in a medium consisting of triphenyl phosphite, N-methyl-2-pyrolidone, pyridine, and calcium chloride. The homogeneous mixture was heated at 220 °C for 1 min under nitrogen. The resulting poly(amide-imide)s (PAIs) having inherent viscosities 0.27-0.78 dl/g were obtained in high yield and are optically active and thermally stable. All of the above polymers were fully characterized by IR spectroscopy, elemental analyses and specific rotation. Some structural characterization and physical properties of this new optically active PAIs are reported.  相似文献   

10.
Five side-chain conjugated polythiophene derivatives, P1-P5, were synthesized by Stille coupling reaction. The effects of side-chain structures, bearing CC double bond, CC triple bond as well as different number of methoxy substituents on the benzene ring of the side-chains, on the optical, electrochemical, and photovoltaic properties of the polymers were investigated. From P1 to P3, the effect of CC triple bond and CC double bond was compared. The results indicate that the content of the thiophene units with the CC triple bond in their conjugated side-chains not only influences the absorption shape and intensity, but also influences the energy bandgap and the photovoltaic properties of the polymers. From P3 to P5, the effect of methoxy substituents on the benzene ring of the conjugated side-chains was compared. On increasing the number of the methoxy groups on the benzene ring of the conjugated side chains, the visible π-π absorption of the conjugated polymer backbone become stronger both in solution and in film. Electron-donating ability of the methoxy groups decreased the bandgap of the polymers. The best polymer solar cell based on P5 with a structure of ITO/PEDOT:PSS/Polymer:PCBM (1:1 wt/wt)/Mg/Al showed a power conversion efficiency of 1.45% under the illumination of AM1.5, 80 mW/cm2.  相似文献   

11.
The oxidative addition of selenol, HhfSeH (2, Hhf = 9,10,11,12,14,15-hexahydro-9,10[3′,4′]-furanoanthracenyl) with [Pt(η2-nb)(Ph3P)2] (nb = norbornene) in toluene afforded the corresponding hydrido(selenolato) Pt(II) complex [cis-PtH(SeHhf)(Ph3P)2] (3) as a stable compound. Refluxing a xylene solution of 3 produced two isomers of five-membered selenaplatinacycles 4 in moderate yield as an inseparable mixture. In addition, the molecular structures of HhfSeH 2 and the minor selenaplatinacycle 4a were determined by X-ray crystallography.  相似文献   

12.
The metal-organic frameworks (three-dimensional porous coordination polymers) [Zn4O(Me4BPDC)3] × 9 DMF, 2 · 9 DMF and [Cu2(Me4BPDC)2] × 9 DMF, 3 · 9 DMF are representatives of the classical Zn-IRMOF series and Cu paddle-wheel complexes with H2Me4BPDC = 2,2′,6,6′-tetramethyl-4,4′-biphenyldicarboxylic acid, 1. The dicarboxylate linker of 1 is a representative of the non-planar biphenyl ligand family, known as an efficient scaffold for chiral molecules. There is a 90° twist angle between the phenyl rings in 1, dictated by the methyl groups, which leads to assembly of doubly interpenetrated pcu-a (in 2) and nbo-a (in 3) nets under low temperature solvothermal conditions in dimethylformamide (DMF). Activation by degassing (to yield 2), exchange with methanol or tetrahydrofuran and subsequent evacuation at elevated temperatures (to yield 3I) gave materials with BET surface areas of 1735 m2/g (2) and 1041 m2/g (3I). Adsorbed quantities of H2 were 1.26 wt% (2) and 1.02 wt% (3I) (77 K, 1 bar), CO2 30.8 cm3/g (2) and 50 cm3/g (3I) (273 K, 1 bar) and CH4 12.9 cm3/g (2) and 11.4 cm3/g (3I) (273 K, 1 bar). The H2 and CO2 sorption values for 2 are similar to those of MOF-5 (IRMOF-1) with its almost doubled BET surface area. An increase is found concerning the adsorbed amounts of N2, H2, and CO2 for 3I compared to related doubly interpenetrated nbo-a-type MOF-601, MOF-602, MOF-603 ([Cu2L2] with L = 2,2′-R2-4,4′-biphenyldicarboxylate, R = CN, Me, I, respectively).  相似文献   

13.
Radical polymerizations of α-allyloxymethylstyrene (1) and copolymerizations of α-(2-phenylallyloxy)methylstyrene (2) were undertaken to acquire comprehensive understanding on polymerization behavior of these dienes and to get polymers with high thermal stability and high glass transition temperature (Tg). One of the monofunctional counterparts of 1 is a derivative of α-methylstyrene, the ceiling temperature of which is low, and the other is an allyl compound that is well-known for the low homopolymerization tendency. This means that the intermolecular propagation reactions leading to pendant uncyclized units are suppressed during the polymerization of 1 to yield highly cyclized polymers. In fact, the degree of cyclization of poly(1) obtained at 140 °C attained the value 92%. Structural studies revealed that repeat cyclic units of poly(1) consist exclusively of five-membered rings. Poly(1) was found to be stable up to 300 °C, but its Tg values were detected at around 100 °C. They are considerably lower than the targeted values which should lie between 180 and 220 °C. An additional drawback of poly(1) is its low molecular weight probably due to a degradative chain transfer. For this reason, copolymerizations of 2 with 1 and with styrene were also carried out to seek for the possibility to control the thermal properties precisely. Monomer 2 was chosen, since it has been reported in our previous work that it yields polymers with thermal stability up to 300 °C and Tg higher than 250 °C. Copolymerization of 2 with styrene afforded polymers with desired thermal properties and high molecular weight.  相似文献   

14.
Treatment of [Cp∗Ir(ppy)Cl] (Cp∗ = η5-C5Me5, ppyH = 2-(2-pyridyl)phenyl) with Ag(OTf) (OTf− = triflate) in MeOH and MeCN gave the solvento complexes [Cp∗Ir(ppy)(solv)][OTf] (solv = MeOH (1) and MeCN (2)). Complex 1 is capable of catalyzing oxidation and azirdination of styrene with PhIO and PhINTs (Ts = tosyl), respectively. Treatment of 2 with a stoichiometric amount of PhINTs resulted in the insertion of the NTs group into the Ir-C(ppy) bond and formation of [Cp∗Ir(η2-ppy-NTs)(MeCN)][OTf] (3). Treatment of 1 with R2E2 afforded [Cp∗Ir(ppy)(η1-R2E2)][OTf] (E = S (4), Se (5), Te (6)). Reactions of 4 and 5 with Ag(OTf) resulted in cleavage of the E-E bond and insertion of an ER group into the Ir-C(ppy) bond. The crystal structures of complexes 2-6 and [Cp∗Ir(η2-ppy-S-p-tol)(H2O)][OTf]2 have been determined.  相似文献   

15.
A series of bis-cyclometalated Ir(III) complexes (8-10, 12, 15, 17, 19, 21, 23, 25, 28, 29 and 33) bearing two chromophoric NC cyclometalated ligands derived from 2-(3,5-bis(trifluoromethyl)phenyl)-4-methylpyridine (1) and a third nonchromophoric ligand has been synthesized. A palladium-catalyzed cross-coupling reaction between 2-chloro-4-methylpyridine (2) and 3,5-bis(trifluoromethyl)phenylboronic acid (3) was used to prepare 2-(3,5-bis(trifluoromethyl)phenyl)-4-methylpyridine (1). Cyclometalation of (1) by IrCl3 was carried out in (MeO)3PO, with the formation of chloro-bridged dimer [NC]2Ir(μ-Cl)2Ir[CN]2 (8). Reaction of (8) with lithium 2,4-pentanedionate, lithium 2,2,6,6-tetramethyl-heptane-3,5-dionate (13), dipivaloyltrimethylsilylphosphine (14), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octadione (16), 1,1,1,3,3,3-hexafluoro-2-pyridin-2-yl-propan-2-ol (18), 1,1,1,3,3,3-hexafluoro-2-pyrazol-1-ylmethyl-propan-2-ol (20), 2-diphenylphosphanylethanol (22), and 1-diphenylphosphanylpropan-2-ol (24), afforded octahedral iridium complexes 9, 12, 15, 17, 19, 21, 23 and 25, respectively. Complex 10, which contains three different ligands (L1 = NC of 1; L2 = NC of 4,4′-dimethyl-[2,2′]bipyridinyl 4; L3 = OO of 2,4-pentanedione), and complex 11, which contains no cyclometalated ligands (L1 = 4; L2 = L3 = Cl; L4 = OO of 2,4-pentanedione) were also isolated as minor products in a one-pot reaction between a 94:5 mixture of 1 and 4, IrCl3 and lithium 2,4-pentanedionate. Reaction of 8 with diphenylphosphanylmethanol (27) in 1,2-dichloroethane unexpectedly led to complexes 28 and 29. The reactions of 8 with benzoylformic acid resulted in the formation of hydroxyl-bridged dimer [NC]2Ir(μ-OH)2Ir[CN]2 (33). According to X-ray analyses, Ir-to-Ir distances in the crystal cell increase from 6.86 Å for 10 to 13.31 Å for 33. The angle theta, which represents the twisting of two cyclometalated C-Ir-N planes relative to each other, varies from 97.5° for 21 to 90.76 for complex 28. OLED devices were fabricated from several Ir complexes and preliminary results are discussed.  相似文献   

16.
Depending on the ratio of starting materials and the reaction conditions, perfluorotoluene (C6F5CF3) reacts with sodium cyclopentadienide (NaCp; Cp = C5H5) and excess sodium hydride to afford, after acidic aqueous workup, moderate to high yields of mono-, bis-, tris-, and tetrakis(perfluoro-4-tolyl)cyclopentadiene (1, 2, 3, and 4, respectively). Treatment of 1 with excess NaH in THF afforded sodium (perfluoro-4-tolyl)cyclopentadienide (5) in 90% yield. Reaction of FeBr2 with 2 equiv. of 5 afforded a 68% yield of (η5-C5H4C7F7)2Fe (6). Reaction of ZrCl4(THF)2 with 2 equiv. of 5 afforded a 58% yield of (η5-C7F7C5H4)2ZrCl2 (7). Reaction of Mn(CO)5Br with 5 afforded a 74% yield of (η5-C7F7C5H4)Mn(CO)3 (8). Treatment of 3b with NaH and then with Mn(CO)5Br in DME afforded a 26% yield of [η5-1,2,4-(C7F7)3C5H2]Mn(CO)3 (9). Treatment of 3b with NaH and then with FeBr2 in DME afforded a trace yield of [η5-1,2,4-(C7F7)3C5H2]2Fe (10), which was not fully characterized. Dienes 2a, 3a, and 3b and metal complexes 7, 8, and 9 were structurally characterized by single-crystal X-ray diffraction. Infrared spectroscopic analysis of the substituted CpMn(CO)3 complexes showed a linear increase of 5 cm−1 in the A-symmteric stretching frequency for each C7F7 substituent, compared to the analogous value of 4 cm−1 reported earlier for each pentafluorophenyl (C6F5) substituent. Solution voltammetric analysis of the substituted ferrocene 6 revealed a shift in the E1/2 of 465 mV relative to ferrocene, compared to the analogous value of about 340 mV for 1,1′-bis(pentafluorophenyl)ferrocene.  相似文献   

17.
Reaction of 2-(2′,6′-diethylphenylazo)-4-methylphenol (L2) with [Ir(PPh3)3Cl] afforded two organoiridium complexes 3 and 4 via C-H bond activation of an ethyl group in the arylazo fragment of the L2 ligand. In both the complexes the azo ligand binds to iridium as a dianionic tridentate C,N,O-donor. Two triphenylphosphines and a hydride (in the case of complex 3) or chloride (in the case of complex 4) are also coordinated to the metal center. A similar reaction of [Ir(PPh3)3Cl] with 2-(2′,6′-diisopropylphenylazo)-4-methylphenol (L3) yielded another organoiridium complex 5, where migration of one iso-propyl group from its original location (say, the 2′ position) to the corresponding third position (say, the 4′ position) took place through C-C bond activation. In this complex the modified azo ligand binds to iridium as a dianionic tridentate C,N,O-donor. Two triphenylphosphines and a hydride are also coordinated to the metal center. The structures of complexes 3 and 4 have been optimized through DFT calculations. The structure of complex 5 has been determined by X-ray crystallography. All the complexes show characteristic 1H NMR signals and intense transitions in the visible region. Cyclic voltammetry on all the complexes shows an oxidation within 0.66-1.10 V vs SCE, followed by a second oxidation within 1.15-1.33 V vs SCE and a reduction within −0.96 to −1.07 V vs SCE.  相似文献   

18.
Trimellitic anhydride acid chloride (2) was obtained by the reaction of trimellitic anhydride (1) and excess amount of thionyl chloride. The acid chloride was reacted with 4,4′-diaminodiphenyl ether (3), and produced the monomer 4. Anthracene-9-carboxaldehyde (5) was reacted with sulfuryl chloride to produce anthracene-9-carboxylic acid chloride (6) in a quantitative yield. Through the reaction of 6 and 2,4,6-triamino-1,3,5-triazine (7), the monomer 8 was produced in high yield. Two monomers were characterized by 1H NMR and FT-IR spectroscopy, and then were used in the polymerization reaction. A new facile and rapid polycondensation reaction of the two monomers was performed by using a domestic microwave oven. The polymerization reaction proceeded rapidly, compared with the conventional solution polycondensation and was completed within 10 min, producing a photoactive poly(amide-imide) in a quantitative yield. The resulting polymer was characterized by IR, 1H NMR and TGA techniques. Thermogravimetric analysis indicated that polymer 9 was thermally stable in nitrogen atmosphere. In addition the initial decomposition temperature, 5% and 10% weight loss (T5, T10) were 284, 356 and 408 °C. The residual weight percent at 700 °C was 51.5%, which shows it is moderately thermally stable. Fluorescence properties of polymer 9 were investigated in several solvents. The ideal concentration of each case was determined by fluorescence self quenching phenomena. Also the self quenching mechanism was studied according to the specific behavior of the polymer in different solvents.  相似文献   

19.
Three novel hyperbranched conjugated polymers (H-tpa, H-cya, and H-pca) with the same conjugated core structure and different functional terminal units were synthesized and applied in dye-sensitized solar cells (DSSCs) as photosensitizers. The photophysical, electrochemical and photovoltaic properties of the three hyperbranched conjugated polymers (HBPs) were investigated in detail. The results showed that donor-π-acceptor architecture in hyperbranched molecule benefited intramolecular charge transfer and consequently increased the generation of photocurrent. The three-dimensional (3D) steric configuration of HBPs could effectively suppress the aggregation of dyes on TiO2 film, which is beneficial for achieving good photovoltaic performances. Among the three hyperbranched dyes, the highest power conversion efficiency (η) of 3.93% (Jsc = 8.78 mA/cm2, Voc = 0.65 V, FF = 0.688) was obtained with a DSSC based on H-pca dye upon the addition of the same mass ratio chenodeoxycholic acid (CDCA) as coadsorbent under AM 1.5 irradiation with 100 mW/cm2 simulated sunlight.  相似文献   

20.
Rapid and highly efficient synthesis of novel optically active poly(amide-imide)s (PAIs) 6(a-f) was achieved using microwave irradiation. These were made from the polycondensation reactions of 4,4-carbonyl-bis(phthaloyl-l-alanine) diacid chloride [N,N-(4,4-carbonyldiphthaloyl)] bisalanine diacid chloride 5 with six different derivatives of hydantoin and thiohydantoin compounds 4(a-f) in the presence of a small amount of a nonpolar organic medium that acts as a primary microwave absorber. Hydantoin and thiohydantoin derivatives 4(a-e) were synthesis from the reactions between benzil or benzil derivatives 3(a-e) with urea and thiourea. 5,5-Dimethylhydantoin 4f was synthesis from the reactions between acetone cyanohydrin 3f and ammonium carbonate. The polycondensation proceeded rapidly, and was completed within 10 min giving a series of PAIs with an inherent viscosity about 0.25-0.45 dL/g. The resulting PAIs 6(a-f) were obtained in a high yield and were optically active and thermally stable. All of the above compounds were fully characterized by means of Fourier transform infrared spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility tests and specific rotation. Thermal properties of the PAIs 6(a-f) were investigated using thermal gravimetric analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号