首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has attracted the attention of academia and industry because of its biodegradability, biocompatibility, thermoplasticity and plastic-like properties. However, PHBV is unstable above 160 °C during melt processing at a temperature above the melting temperature, which restricts practical applications as a commodity material. It is widely believed that thermal degradation of PHBV occurs almost exclusively via a random chain scission mechanism involving a six-membered ring transition state. Here, 2,2′-bis(2-oxazoline) (BOX) was selected to modify PHBV to control the formation of six-membered ring ester during thermal degradation. The resulting hydroxyl-terminated PHBVs (HT-PHBVs) had improved thermal stability due to a decrease in the negative inductive effect of the neighboring group of methylene groups at the β-position to the ester oxygen, and a decrease in the electron-denoting effect of substituent group of carbon atoms at α-position to the ester oxygen. The optimal reaction temperature and time were determined to be 95 °C and 6 h, respectively. Compared with those of original PHBV, the temperature determined at 5% weight loss (T5%), the initial decomposition temperature (T0), the maximum decomposition temperature (Tmax), the complete decomposition temperature (Tf) of HT-PHBV prepared under the optimal conditions increased by 31, 24, 19 and 19.1 °C, respectively.  相似文献   

2.
A poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibrous surface with various bead-on-string structures was fabricated by electrospinning. PHBV was electrospun at various concentrations and then CF4 plasma treatment was employed to further improve the hydrophobicity of the PHBV fiber surfaces. The surface morphology of the electrospun PHBV mats was observed by scanning electron microscopy (SEM). The surface properties were characterized by water contact angle (WCA) measurements and X-ray photoelectron spectroscopy (XPS). The surface morphology of the electrospun PHBV fibrous mats with the bead-son-string structure varied with the solution concentration. The WCA of all of the electrospun PHBV mats was higher than that of the PHBV film. In particular, a very rough fiber surface including porous beads was observed when PHBV was electrospun from the solution with a concentration of 26 wt%. Also, its WCA further increased from 141 degrees to 158 degrees after CF(4) plasma treatment for 150 s. PHBV can be rendered superhydrophobic by controlling the surface morphology and surface energy, which can be achieved by adjusting the electrospinning and plasma treatment conditions.  相似文献   

3.
Isothermal crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)   总被引:1,自引:0,他引:1  
Isothermal crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was investigated by means of differential scanning calorimetry and polarized optical microscopy (POM). The Avrami analysis can be used successfully to describe the isothermal crystallization kinetics of PHBV, which indicates that the Avrami exponent n=3 is good for all the temperatures investigated. The spherulitic growth rate, G, was determined by POM. The result shows that the G has a maximum value at about 353 K. Using the equilibrium melting temperature (448 K) determined by the Flory equation for melting point depression together with U∗=1500 cal mol−1, T=30 K and Tg=278 K, the nucleation parameter Kg was determined, which was found to be 3.14 ± 0.07 × 105 (K2), lower than that for pure PHB. The surface-free energy σ=2.55×10−2 J m−2 and σe=2.70±0.06×10−2 J m−2 were estimated and the work of chain-folding (q=12.5±0.2 kJ mol−1) was derived from σe, and found to be lower than that for PHB. This implies that the chains of PHBV are more flexible than that of PHB.  相似文献   

4.
Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly-(l-lactic acid) (PLA) have attracted much interest in recent years since they are biodegradable, thus can replace synthetic non-degradable materials. In this study, improvements of PHBV, mechanical, phase inversions, and rheological properties were investigated after blending with PLA in varying ratio’s. Three different blends of commercially available PLAs with 92–98% l-lactide units and one grade of PHB with 5% valerate content were blended using a micro-compounder at 175 °C. The composition of PHBV in blends ranged from 50% to 80%. With the addition of PLA, increases in the flexural strength and elastic modulus were observed for several blends, while minor to no changes were detected in the elongation at break and tensile strength as compared to pure PHBV material. Like many conventional plastics, the complex viscosity decreased with increasing rotational frequency due to decreasing entanglements and molecular weight. The complex viscosity with respect to time was very stable for the blends, but no improvements in the PHBV viscosity were observed with the addition of PLA at 170 °C. Three phase inversion models were used to predict the continuity of the blends, and the results showed both dual- and PLA-continuity phase for the blends. In summary, the mechanical results showed improvements in the tensile and flexural properties, while the rheological observation showed minor improvements in the complex viscosity for numerous concentrations.  相似文献   

5.
Segmented polyurethane (SPU) nanofiber mats were prepared by electrospinning technique using the combination of four different solvents viz. tetrahydrofuran, N,N′‐dimethyl formamide, N,N′‐dimethyl acetamide, and dimethyl sulfoxide. Morphology of the electrospun nanofibers was examined by field emission scanning electron microscope. Experimental results revealed that the morphologies of polyurethane nanofiber mats have been changed significantly with the solvent selection for the electrospinning. It was observed that the diameters and morphology of the SPU nanofibers were influenced greatly by the use of combination of solvents. The uniform polyurethane nanofibers without beads or curls could be prepared by electrospinning through the selection of combination of good conductive and good volatile solvent viz. 7.5 wt/v% of SPU in N,N′‐dimethyl formamide/tetrahydrofuran (30 : 70 v/v) solutions at 20 kV applied voltages and volume flow rate of 1 ml/min. On the basis of the results obtained from this investigation, it has been established that solvent selection is one of the driving factors for controlling the morphology of the polyurethane electrospun nanofiber mats. The well‐controlled morphology of electrospun polyurethane nanofiber mats could be useful for many potential industrial applications such as in biomedical, smart textiles, nanofiltration, and sensors. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The development of next-generation adsorption, separation, and filtration materials is growing with an increased research focus on polymer composites. In this study, a novel blend of chitosan (CS) and polyethylene oxide (PEO) nanofiber mats was electrospun on titanium (Ti)-coated polyethylene terephthalate (PET) track-etched membranes (TMs) with after-treatment by glutaraldehyde in the vapor phase for enhancing the nanofiber stability by crosslinking. The prepared composite, titanium-coated track-etched nanofiber membrane (TTM-CPnf) was characterized by Fourier transform infra-red (FTIR), water contact angle, and scanning electron microscopy (SEM) analyses. Smooth and uniform CS nanofibers with an average fiber diameter of 156.55 nm were produced from a 70/30 CS/PEO blend solution prepared from 92 wt. % acetic acid and electrospun at 15 cm needle to collector distance with 0.5 mL/h flow rate and an applied voltage of 30 kV on the TTM-CPnf. Short (15 min) and long (72 h)-term solubility tests showed that after 3 h, crosslinked nanofibers were stable in acidic (pH = 3), basic (pH = 13), and neutral (pH = 7) solutions. The crosslinked TTM-CPnf material was biocompatible based on the low mortality of freshwater crustaceans Daphnia magna. The composite membranes comprised of electrospun nanofiber and TMs proved to be biocompatible and may thus be suitable for diverse applications such as dual adsorption–filtration systems in water treatment.  相似文献   

7.
Melting behaviour and crystal morphology of poly(3-hydroxybutyrate) (PHB) and its copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with various hydroxyvalerate (HV) contents [5 wt.% (PHB5V), 8 wt.% (PHB8V) and 12 wt.% (PHB12V)] have been investigated by conventional DSC, step-scan differential scanning calorimetry (SDSC), wide angle X-ray diffraction (WAXRD) and hot stage polarised optical microscopy (HSPOM). Crystallisation behaviour of PHB and its copolymers were investigated by isothermal crystallisation kinetics. Thermal properties were investigated after isothermal crystallisation treatment. Multiple melting peak behaviour was observed for all polymers. SDSC data revealed that PHB and its copolymers undergo melting-recrystallisation-remelting during heating, as evidenced by exothermic peaks in the IsoK baseline (Cp,IsoK, non-reversing signal). An increase in degree of crystallinity due to significant melt-recrystallisation was observed for isothermally crystallised polymers. SDSC proved a convenient and precise method for measurement of the apparent thermodynamic specific heat (Cp,ATD, reversing signal). PHB and PHBV showed different crystal morphologies for similar crystallisation condition. HSPOM results showed that the crystallisation rates reduced and sizes of spherulites were significantly increased as HV content increased.  相似文献   

8.
Conduction characteristics of the poly(ethylene oxide) based new polymer electrolyte (PEO)6:NaPO3, plasticized with poly(ethylene glycol) are investigated. Free standing flexible electrolyte films of composition (PEO)6:NaPO3 + x wt.% PEG400 (30 ? x ? 70) are prepared by solution casting method. A combination of X-ray diffraction (XRD), optical microscopy and differential scanning calorimetry (DSC) studies have indicated enhancement in the amorphous phase of polymer due to the addition of plasticizer. Further, a reduction in the glass transition temperature observed from the DSC result has inferred increase in the flexibility of the polymer chains. The cationic transport number (tNa+) of 0.42 determined through combined ac-dc technique has confirmed ionic nature of conducting species. Ionic conductivity studies are carried out as a function of composition and temperature using complex impedance spectroscopy. The electrolyte with maximum PEG400 content has exhibited an enhancement in the conductivity of about two orders of magnitude compared to the host polymer electrolyte. The complex impedance data is analyzed in conductivity, permittivity and electric modulus formalism in order to throw light on transport mechanism. A solid state electrochemical cell based on the above polymer electrolyte with a configuration Na|SPE|(I2 + acetylene black + PEO) has exhibited an open circuit voltage of 2.94 V. The discharge characteristics are found to be satisfactory as a laboratory cell.  相似文献   

9.
Copolyimide membranes with different poly(ethylene oxide) (PEO) content (from 28 to 68 wt percent, wt.%) have been thermally treated at different temperatures (from 200 to 300 °C) to evaluate the effect of the thermal protocol on the gas transport properties to O2, N2, CO2 and CH4. The permeability coefficients (P) for all gases increased after the thermal treatment of the membranes and were related to the PEO content, being this enhancement higher for membranes with lower PEO content. Thermal treatment at 300 °C of the membranes with 28 and 43 wt.% of PEO, yielded more productive materials for CO2/N2 separation since the permeability coefficients for CO2 (PCO2PCO2) increased 9.8 and 3.2 times, respectively, while the selectivity just suffered a small drop (less than 1.3 times in both cases). Overall, the membrane with 43 wt.% of PEO exhibited the best performance, with a PCO2PCO2 of 78 Barrer and a CO2/N2 selectivity of 52. For CO2/CH4 separation, an increase on selectivity of 1.8 times was obtained in the copolyimide with 43 wt.% of PEO, reaching the selectivity a value of 18. This enhancement of productivity has been associated to an improvement of phase segregation.  相似文献   

10.
Poly(methyl methacrylate) (PMMA), poly(vinyl chloride) (PVC), Nylon 6, and Nylon 6,6 have been electrospun successfully. The nanofibers have been characterized by scanning electron microscopy (SEM), confirming the presence of bead free and fiber‐bead free morphologies. Thermogravimetric analysis (TGA) indicated differences between the thermal stability of PMMA nanofibers and PMMA powder. However, no significant differences were observed between the starting physical form (powder or pellet) of PVC, Nylon 6 and Nylon 6,6, and their corresponding electrospun nanofibers. Differential scanning calorimetry (DSC) demonstrated a lower glass transition temperature (Tg) and water absorption for PMMA electrospun nanofibers. Furthermore, electrospun Nylon 6 and Nylon 6,6 had a slight decrease in crystallinity. Tensile testing was performed on the electrospun nanofibers to obtain the Young modulus, peak stress, strain at break, and energy to break, revealing that the non‐woven mats obtained had modest mechanical properties that need to be enhanced. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
As the cellulose acetate butyrate possessed multichiral carbon atoms in its molecular structure unit, enantioselective membrane was prepared using cellulose acetate butyrate as membrane material. The flux and permselective properties of membrane using aqueous solutions of (R,S)-2-phenyl-1-propanol as feed solution was studied. The top surface and cross-section morphology of the resulting membranes were examined by scanning electron microscopy. When the membrane was prepared with 15 wt.% cellulose acetate butyrate and 20 wt.% DMF in the casting solution, and the operating pressure and feed concentration of racemate were 2 kgf/cm2 and 5 mmol/L, respectively, over 98% of enantiomeric excess (e.e.) was obtained. This is a report, for the first time, that the cellulose acetate butyrate is used as optical resolution membrane material for isolating the optical isomers of (R,S)-2-phenyl-1-propanol.  相似文献   

12.
Pervaporation was used for removal of butan-1-ol from its 5 wt.% of aqueous solution, at which the concentration of Clostridium acetobutylicum starts to decrease. The polydimethylsiloxane (PDMS) membrane containing 0, 10, 20 or 30 wt.% of benzyl-3-butylimidazolium tetrafluoroborate ([BBIM][BF4]) ionic liquid was used. Differential scanning calorimetry measurements showed that PDMS-[BBIM][BF4] membranes (though optically homogeneous) contained PDMS and [BBIM][BF4] phases. Pervaporation selectivity increased and total flux through membranes raised moderately with an increased content of [BBIM][BF4] in PDMS-[BBIM][BF4] membranes. Hence, immobilization of a proper ionic liquid in a membrane results in the creation of pervaporation membranes, effective in the removal of alcohol from fermentation broths.  相似文献   

13.
Two novel polynuclear complexes with methanoate anions and 3-hydroxypyridine ligands [Cu(μ-HCO2)2(3-pyOH)]n (1) and [Cu2(μ-HCO2)2(μ-3-pyOH)2(3-pyOH)2(HCO2)2]n (2), respectively, were synthesized and characterized. The central copper atom in 1 is surrounded by four methanoates and a 3-pyOH molecule, forming a square-pyramidal CuO3NO chromophore. All the methanoates are bidentate and serve as bridges between the adjacent copper ions via syn-anti and anti–anti coordination. The basal square coordination axes are formed by O(syn), N(3-pyOH) (1.974(2), 2.016(2) Å) and O(anti), O(anti) (1.945(2), 1.960(2) Å), while the third O(anti) (2.247(2) Å) is on the top of the pyramid. A ferromagnetic transition with an exchange constant 2J/kB = 9.2 cm−1 is found for 1 below 20 K. This interaction probably takes place through two syn-anti methanoates extended in a chain through the 2D structure. On the other hand, two monoatomic Cu–O–Cu intra-dinuclear asymmetric (1.986(2), 2.415(2) Å) bridges of two methanoates in [Cu2(HCO2)4(3-pyOH)4] (2) are present. An elongated distorted octahedral coordination sphere around each copper(II) atom is completed by an additional monodentate terminal methanoate (1.975(2) Å), two N-coordinated 3-pyOH (2.005(2), 2.002(2) Å) and the third weakly O-coordinated 3-pyOH (2.732(2) Å). Although a shorter Cu?Cu distance is noticed in 2 than in 1 (4.690(1) Å 1, 3.442(1) Å 2), much weaker ferromagnetism is found in 2.  相似文献   

14.
The quantitative determination of oxide concentration by laser-induced breakdown spectroscopy is relevant in various fields of applications (e.g.: analysis of ores, concrete, slag). Calibration free laser-induced breakdown spectroscopy and the multivariate calibration are among the methods employed for quantitative concentration analysis of complex materials. We measured the intensity of neutral and ionized atomic emission lines of oxide materials by laser-induced breakdown spectroscopy and we modified the calibration free laser-induced breakdown spectroscopy method to increase the accuracy. The concentration of oxides was obtained by using stoichiometric relations. Sample materials were prepared from oxide powder (Fe2O3, MgO, CaO) by mixing and pressing. The concentration was 9.8–33.3 wt.% Fe2O3, 7.6–33.3 wt.% MgO and 33.3–81.2 wt.% CaO for different samples. Nd:YAG laser (wavelength 1064 nm, pulse duration ≈ 6 ns) ablation was performed in air. The laser-induced plasma emission was measured by an Echelle spectrometer equipped with a sensitivity calibrated ICCD camera. The numerical calibration free laser-induced breakdown spectroscopy algorithm included the fast deconvolution of instrumental function, and the correction of self-absorption effects. The oxide concentration CCF calculated from calibration free laser-induced breakdown spectroscopy results and the nominal concentration CN were very close for all samples investigated. The relative error in concentration, |CCFCN|/CN, was < 10%, < 20%, and < 5% for Fe2O3, MgO, and CaO, respectively. The results indicate that this method can be employed for the analysis of major elements in multi-component technical materials.  相似文献   

15.
A detailed study, involving the synthesis of a single-source precursor containing two metal ions sharing the same crystallographic site, has been undertaken to elucidate the use of such a single-source precursor in a CVD process for growing thin films of oxides comprising these two metals, ensuring a uniform composition and distribution of metal ions. The substituted complexes Cr1−xAlx(acac)3, where acac = acetylacetonate, have been prepared by a co-synthesis method, and characterized using UV–Vis spectroscopy, TGA/DTA measurements, and single crystal X-ray diffraction at low temperature. All the studied compositions crystallize in the monoclinic space group P21/c with Z = 4 in the unit cell. It was observed that the ratio (Al:Cr) of the site occupancy for the metal ions, obtained from single crystal refinement, is in agreement with the results obtained from complexometric titrations. All the solid state structures have the metal in an octahedral environment forming six-membered chelate rings. M–O acac bond lengths and disorder in the terminal carbon have been studied in detail for these substituted metal–organic complexes. One composition among these was chosen to evaluate their suitability as a single-source precursor in a LPMOCVD process (low-pressure metal–organic chemical vapour deposition) for the deposition of a substituted binary metal oxide thin film. The resulting thin films were characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy.  相似文献   

16.
Liquid–liquid equilibria of systems water (A) + CiEj surfactant (B) + n-alkane (C) have been modeled by a mass-action law model previously developed and so far successfully applied to a series of binary water + CiEj systems and to the ternary system water + C4E1 + n-dodecane. These calculations provide the basis for the presented modeling. The aqueous systems give information about the association constants and the χAB-parameter of the Flory–Huggins theory and the ternary C4E1-system provides universal temperature functions for the χAC- and the χBC-parameter. The three-phase equilibrium for seven ternary CiEj systems (i = 6–12, j = 3–6) has been calculated by fitting one additional parameter for each of both temperature functions to the characteristic “fish-tail” point. The agreement with the experimental data is reasonably well. For systems with very small three-phase areas the results can considerably be improved by individual temperature functions that incorporate the experimental temperature maximum of the “fish” into the parameter fit. Based on the parameters of the system water + C8E4 + n-C8H18 the “fish-shaped” phase diagram of the system water + C8E4 + n-C14H30 was predicted reasonably well.  相似文献   

17.
The oxidative cross-coupling between 4-hydroxy-6-methyl-2-pyrone or 3-hydroxy-2-methyl-4-pyrone and secondary phosphine chalcogenides proceeds in CCl4/Et3N under mild conditions (20–52 °С, 0.75–10 h) through the hydroxyl group to give O-(6-methyl-2-oxo-2H-pyran-4-yl) diorganylphosphinochalcogenoates or O-(2-methyl-4-oxo-4H-pyran-3-yl) diorganylphosphinochalcogenoates, in high yields.  相似文献   

18.
The present study describes the harnessing of revalued cow milk (denoted as waste milk) for fabricating casein fibers (CAS) with enhanced mechanical performance and antibacterial properties by the electrospinning method. For this purpose, polyethylene oxide (PEO) was employed (10 and 20 wt%) as a binder for the appropriate electrospun CAS fibers. Different amount of tannic acid (TA) was incorporated into casein/polyethylene oxide fibers (CAS/PEO) as a crosslinker agent, bringing filaments with a diameter of ca. 2 µm. The incorporation of 4 wt% of TA promotes the fibers' reticulation, forming a stable three-dimensional network. Also, the mechanical performance of CAS/PEO fibers was improved, where the tensile strength was increased from 0.91 MPa to 1.88 MPa with 4 % of TA, while the breaking elongation was increased from 93.74 % to 274.56 %. This behavior benefits the processing of fibers by electrospinning. Furthermore, the TA addition during the electrospun of CAS/PEO fibers enhances fibers' wettability properties and thermal stability induced by the crosslinker agent. Additionally, the antibacterial activity (AA) test demonstrates that CAS fibers can inhibit the growth of Gram-positive S. aureus and Gram-negative E. coli after 0.5 h, 1.5 h, 3 h, and 24 h of contact, which is generated by the TA addition. Our results suggest that the electrospun fabrication of CAS/PEO fibers with TA as a crosslinker agent represents an innovative harnessing of waste milk to produce functional textiles with potential biological application.  相似文献   

19.
Poly(propylene carbonate)/poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PPC/PHBV) blends were prepared via the solution casting method at different proportions. Their thermal characteristics were studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). The degradability of the blends was investigated in soil suspension cultivation and in vitro degradation testing. The changes of structure and molecular weight for blends were also studied by 1H nuclear magnetic resonance spectroscopy (1H NMR), scanning electron microscopy (SEM) and gel permeation chromatography (GPC) before and after degradation. Although the PPC/PHBV blends were immiscible, the addition of PHBV could improve the thermal stability of PPC. PHBV was degraded mainly by the action of microbial enzymes in the soil suspension, which biodegraded it more rapidly than PPC in a natural environment. PPC was degraded mainly by chemical hydrolysis and random hydrolytic scission of chains in the PBS solution in vitro, and degradation of PPC was more rapid than that of PHBV in a simulated physiological environment.  相似文献   

20.
In this work, flexible nanofibrous membranes (mats) of poly(ethylene oxide) (PEO) with and without multiwall carbon nanotubes (MWNTs) were fabricated by electrospinning. The effects of annealing and MWNT concentration on mat morphology, MWNT dispersion within the nanofibers, and the mechanical properties of electrospun mats were studied. Annealing temperatures ranged from 60 °C to 64 °C [near the melting temperature (64 °C via differential scanning calorimetry)] for 4 minutes. Samples were annealed with and without applied tension (constrained and unconstrained annealing). Annealing at the highest temperature (64 °C), before the loss of fibrous morphology, significantly improved fiber–fiber bonding and therefore the tensile strength of the mats. Compared with unconstrained annealing, constrained annealing introduced fiber alignment (and therefore molecular orientation) along the tensile axis (direction of constraint) during annealing and resulted in a significant increase in modulus for all samples (with and without MWNTs). The use of constrained annealing may be a facile approach to enhance modulus in nanofibrous mats while maintaining high porosity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 787–796  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号