首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the syntheses of poly(butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate) triblock copolymer and poly(methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate) pentablock copolymers using copper mediated living radical polymerisation are reported. Living radical polymerisations were performed using the system CuIBr/N-(n-propyl)-2-pyridylmethanimine as catalyst in conjunction with a difunctional initiator, the 1,4-(2-bromo-2-methylpropionoto)benzene (1). The syntheses of poly(MMA), poly(BMA-b-MMA-b-BMA) and poly(MMA-b-BMA-b-MMA-b-BMA-b-MMA) are described in detail using 1H NMR spectroscopy and size exclusion chromatography. The living behaviour and the blocking efficiency of these polymerisations were investigated in each case. Difunctional initiator, 1, based on hydroquinone was synthesised and fully characterised and subsequently used to give difunctional poly(methyl methacrylate) macroinitiators with molecular weights up to 54,000 g mol−1 and polydispersity between 1.07 and 1.32; molecular weights were close to the theoretical values. The difunctional macroinitiators were used to reinitiate butyl methacrylate to give triblock copolymers of Mn between 17,500 and 45,700 g mol−1. Polydispersities remained narrow below 25,000 g mol−1 but broadened at higher masses. The difunctional triblock macroinitiators were subsequently used to reinitiate methyl methacrylate to give ABABA pentablock copolymers with Mn up to 37,000 g mol−1 with polydispersity=1.13. Under certain conditions radical-radical reaction led to a broadening of polydispersity index.  相似文献   

2.
Near-monodisperse, siloxane-functionalised silica particles are used as a colloidal substrate for the surface-initiated polymerisation of various hydrophilic methacrylates: oligo(ethylene glycol) methacrylate (OEGMA), 2-(N-morpholino)ethyl methacrylate (MEMA), and ammonium 2-sulfatoethyl methacrylate (SEM) by atom transfer radical polymerisation in aqueous media at room temperature. The bulk and surface compositions of the resulting composite particles were assessed using various techniques. Thermogravimetric analysis of the resulting silica-polymer composites indicated polymer loadings of 5.4-8.6%, depending on the nature, structure and target degree of polymerisation (Dp). Dynamic light scattering studies indicate increases in hydrodynamic diameter of 14-87 nm compared to the reference silica particles. FT-IR spectroscopy confirmed additional features characteristic of the carbonyl group and pendant end-chain functionalities of the methacrylic polymer chains. The elemental and chemical surface compositions of the initial silica particles and final polymer-grafted composite particles were extensively investigated by X-ray photoelectron spectroscopy (XPS). The composite particles had appreciably higher C/Si atomic ratios, compared to the original initiator-functionalised silica particles, and these ratios increased with increasing target Dp. In addition, close inspection revealed that the relative intensities of the various components of the peak-fitted C1s envelopes varied significantly, depending on the target degree of polymerisation and the chemical structure of the methacrylic monomer. Moreover, in the case of the MEMA and SEM polymerisations, new nitrogen (MEMA) and sulfur (SEM) XPS signals were detected. This XPS study confirmed the presence of a thin outer layer of grafted polymer chains surrounding the silica particles.  相似文献   

3.
Well-defined amphiphilic block copolymers composed of hydrophilic and hydrophobic blocks linked through an acid-labile acetal bond were synthesized directly by RAFT polymerization using a new poly(ethylene glycol) (PEG) macroRAFT agent modified with an acid-labile group at its R-terminal. The new macroRAFT agent was used for polymerization of poly(t-butyl methacrylate) (PtBMA) or poly(cholesterol-methacrylate) (PCMA) to synthesize well-defined block copolymers with a PEG block sheddable under acidic conditions. The chain extension polymerization kinetics showed known traits of RAFT polymerization. The molecular weight distributions of the copolymers prepared using the new macroRAFT agent remained below 1.2 during the polymerizations and the molecular weight of the copolymers was linearly proportional to monomer conversions. The acid-catalyzed hydrolysis behavior of the PEG-macroRAFT agent and the PEG-b-PtBMA (Mn = 13,600 by GPC, PDI = 1.10) was studied by GPC, 1H NMR and UV–vis spectroscopy. The half-life of acid-hydrolysis was 70 min at pH 2.2 and 92 h at pH 4.0. The potential use of the pH-labile shedding behavior of the copolymers was demonstrated by conjugating a thiol-modified siRNA to ω-pyridyldisulfide modified PEG-b-PCMA. The resultant PEG-b-PCMA-b-siRNA triblock modular polymer released PCMA-b-siRNA segment in acidic and siRNA segment in reductive conditions, as confirmed by polyacrylamide gel electrophoresis.  相似文献   

4.
The homogeneous controlled/‘living’ free radical polymerization of n-butyl methacrylate in toluene or o-xylene at 90 °C, in bulk and in solution, using the novel combination of the catalyst bis-triphenylphosphine iron(II)chloride tetrahydrate (FeCl2 · 4H2O(PPh3)2) with ethyl 2-bromoisobutyrate ((CH3)2CBrCO2Et)) and α,α-dichloroacetophenone (CHCl2COPh) as initiators has been investigated. The rate of polymerization initiated by the two initiators exhibited first-order kinetic with respect to the monomer. A linear increase of the number-average molecular weight (Mn) versus monomer conversion was observed for these systems. Among the two initiation systems, ethyl 2-bromoisobutyrate gave the fastest polymerization rate. A system with Fe3+ added at the beginning of the polymerization was examined and the lowest polydispersity (Mw/Mn∼1.2) was found when 10% Fe3+, relative to Fe2+ was added.  相似文献   

5.
Transition metal mediated living radical polymerisation of butyl methacrylate has been demonstrated with a copper(I) halide N-alkyl-2-pyridylmethanimine ligands based catalyst. Optimum conditions were found to be with copper(I) chloride and N-octyl-2-pyridylmethanimine catalyst at 65 °C where conversions of 85% were achieved with polymers of Mn = 8900 g mol−1 (theoretical = 8400 g mol−1) and PDI = 1.23. Both non-ionic and ionic surfactants were employed which were also made by living radical polymerisation. The non-ionic surfactant was a block copolymer of PMMA from a polyethyleneglycol macroinitiator (total Mn = 7600 g mol−1, PDI = 1.20) and the ionic surfactant PDMEAMA-PMMA (total Mn = 8000 g mol−1, PDI = 1.21) with the PDMEAMA block quaternized with MeI (13.8%, 28.4%, 47.7% and 100%). A range of ligands were employed in the suspension polymerisation by varying the alkyl group on the ligand increasing the hydrophobicity (alkyl = propyl (PrMI), pentyl (PMI), octyl (OMI), dodecyl (DMI) and octadecyl (ODMI)). The more hydrophobic ligands were found to be more effective due to lower partitioning into the aqueous phase. Block copolymers of P(EMA)-P(BMA) and P(MMA)-P(BMA) were prepared by first preparing macroinitiators via living radical polymerisation (Mn = 1600 g mol−1 (PDI = 1.23) for P(EMA) and Mn = 1500 g mol−1 (PDI = 1.22) for P(MMA)) and using them for initiation of BMA in suspension polymerisation. Block copolymers had Mn between 12,800 and 13,700 g mol−1 with PDI between 1.33 and 1.54. Block copolymer growth showed excellent linear first order kinetics wrt monomer and demonstrated characteristics expected of a living radical polymerisation. Particle sizes were measured by SEM and DLS with good agreement (1.4-2.8 μm) and SEM showed spherical particles were formed.  相似文献   

6.
Short interfering RNA (siRNA) has been widely used for studying gene functions in mammalian cells but varies markedly in its gene silencing efficacy. Although many design rules/guidelines for effective siRNAs based on various criteria have been reported recently, there are few consistencies among them. This makes it difficult to select effective siRNA sequences in mammalian genes. Another shortcoming of most previously reported methods is that they cannot estimate the probability that a candidate sequence will silence the target gene. The analytical prediction method proposed in the present study uses Bayes’ theorem to select effective siRNA target sequences from many possible candidate sequences. It is quite different from the previous score-based siRNA design techniques and can predict the probability that a candidate siRNA sequence will be effective. The results of evaluating it by applying it to recently reported effective and ineffective siRNA sequences for various genes indicate that it would be useful for many other genes. It should therefore be useful for selecting siRNA sequences effective for mammalian genes.  相似文献   

7.
This review summarizes recent advances in the controlled radical polymerization of N-vinyl monomers, such as N-vinylcarbazole, N-vinylindole derivatives, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylformamide, N-vinylacetoamide derivatives, N-vinyl(na)phthalimides, N-vinylimidazolium salts, and N-vinyltriazoles. Recent significant progress of controlled radical polymerization of these N-vinyl monomers has allowed for the synthesis of well-defined functional polymers having various architectures, including block copolymers, branched polymers (stars, star block copolymers, miktoarm star copolymers, and graft copolymers), and hybrids. Characteristic properties, assembled structures, and three-dimensional architectures of these functional polymers derived from N-vinyl monomers are briefly introduced.  相似文献   

8.
In this study, a graft polymer matrix prepared by living radical polymerisation had been incorporated into polymer dispersed liquid crystals (PDLCs). The electro-optical properties of the PDLCs were investigated. The results showed that the length and density of graft chain had a great influence on the memory effect of the PDLCs. Low-driving-voltage and weak-memory-effect PDLCs could easily be obtained with a graft polymer matrix.  相似文献   

9.
10.
Despite the promising prospect of small interfering RNA(siRNA) for the treatment of diverse diseases,it remains challenging to develop novel delive ry materials to desired tissues and cells.In this study,a novel iron oxyhydroxide(FeOOH) nanoparticle(NP) whose surface was modified with branched polyetherimide(PEI) was developed to deliver siRNA into the cancer cells.It was demonstrated that PEI-FeOOH(PFeOOH) efficiently complexed siRNA,mediated effective cellular uptake and endosomal escape,thereby triggering robust gene silencing in vitro.In addition,PFeOOH/siRNA formulation loading with anti-RRM2 siRNA effectively inhibited the growth of tumor tissues,and exhibited excellent safety profiles in vivo.Therefore,this study conceptually provided a FeOOH-based nucleic acid delivery vesicle which can potentially use to achieve diagnosis and therapy simultaneously.  相似文献   

11.
The atom transfer radical polymerization (ATRP) and reversible addition–fragmentation chain transfer (RAFT) of acrylates (methyl acrylate and butyl acrylate) with allyl butyl ether (ABE) were investigated. Well‐defined copolymers containing almost 20 mol % ABE were obtained with ethyl‐2‐bromoisobutyrate as an initiator. Narrow molar mass distributions (MMDs; polydispersity index ≤ 1.3) were obtained from the ATRP experiments, and they suggested conventional ATRP behavior, with no peculiarities caused by the incorporation of ABE. The comparable free‐radical (co)polymerizations resulted in broad MMDs. Increasing the fraction of ABE in the monomer feed led to an increase in the level of incorporation of ABE in the copolymer, at the expense of the overall conversion. Similarly, RAFT copolymerizations with S,S′‐bis(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate also resulted in excellent control of the polymerization with a significant incorporation of ABE within the copolymer chains. The formation of the copolymer was confirmed with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). From the obtained MALDI‐TOF MS spectra for the ATRP and RAFT systems, it was evident that several units of ABE were incorporated into the polymer chain. This was attributed to the rapidity of the cross‐propagation of ABE‐terminated polymeric radicals with acrylates. This further indicated that ABE was behaving as a comonomer and not simply as a chain‐transfer agent under the employed experimental conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3271–3284, 2004  相似文献   

12.
Polymerisation of vinyl acetate by conventional free radical polymerisation using a diazo initiator followed by copper mediated living radical polymerisation with a range of monomers was studied. This method led to the synthesis of triblock copolymers. We have thus successfully prepared several new ABA triblock copolymers where B is poly(vinyl acetate) and A is (dimethylamino)ethyl methacrylate (DMAEMA), (polyethylene glycol) methyl ether methacrylate (MeO(PEG)MA) or solketal methacrylate (SMA). The sequential conventional/living radical polymerisation approach provided an efficient route to synthesis of new block copolymers. The properties of these amphiphilic polymers have been subsequently investigated by 1H NMR, fluorescence spectroscopy, tensiometry and dynamic light scattering to investigate their behaviour as potential surfactants.  相似文献   

13.
Effective ways to conduct controlled/living radical polymerization (CRP) in emulsion systems are necessary for commercial latex production without significant modification of current industrial facilities. Conducting CRP in emulsion media is more complicated and more challenging than its application in homogeneous bulk. These challenges come from the intrinsic kinetics of emulsion polymerization. They include mass transport, slow chain growth mechanism, and exit of short radicals from polymeric particles. This review describes the recent developments of CRP in heterogeneous dispersion, including miniemulsion, microemulsion, dispersion, and especially emulsion. Various approaches for conducting emulsion CRP are detailed, including controlled seeded emulsion polymerization, nanoprecipitation, use of short oligomers as macroinitiators for in situ block copolymerization, and RAFT‐mediated self‐assembly. In addition many remaining challenges of the current methods barring wide spread industrial application of emulsion CRP are also suggested. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6983–7001, 2008  相似文献   

14.
Graphene nanosheets possess a range of extraordinary physical and electrical properties with enormous potential for applications in microelectronics, photonic devices, and nanocomposite materials. However, single graphene platelets tend to undergo agglomeration due to strong π–π and Van der Waals interactions, which significantly compromises the final material properties. One of the strategies to overcome this problem, and to increase graphene compatibility with a receiving polymer host matrix, is to modify graphene (or graphene oxide (GO)) with polymer brushes. The research to date can be grouped into approaches involving grafting‐from and grafting‐to techniques, and further into approaches relying on covalent or noncovalent attachment of polymer chains to the suitably modified graphene/GO. The present Highlight article describes research efforts to date in this area, focusing on the use of controlled/living radical polymerization techniques. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Successful clinical application of siRNA to liver-associated diseases reinvigorates the RNAi therapeutics and delivery vectors, especially for anticancer combination therapy. Fine tuning of copolymer-based assembly configuration is highly important for a desirable synergistic cancer cell-killing effect via the codelivery of chemotherapeutic drug and siRNA. Herein, an amphiphilic triblock copolymer methoxyl poly(ethylene glycol)-block-poly(L-lysine)-block-poly(2-(diisopropyl amino)ethyl methacrylate) (abbreviated as mPEG-PLys-PDPA or PLD) consisting of a hydrophilic diblock mPEG-PLys and a hydrophobic block PDPA is synthesized. Three distinct assemblies (i.e., nanosized micelle, nanosized polymersome, and microparticle) are acquired, along with the increase in PDPA block length. Furthermore, the as-obtained polymersome can efficiently codeliver doxorubicin hydrochloride (DOX) as a hydrophilic chemotherapeutic model and siRNA against ADP-ribosylation factor 6 (siArf6) as an siRNA model into cancer cell via lysosomal pH-triggered payload release. PC-3 prostate cell is synergistically killed by the DOX- and siArf6-coloading polymersome (namely PLD@DOX/siArf6). PLD@DOX/siArf6 may serve as a robust nanomedicine for anticancer therapy.  相似文献   

16.
This work describes the polymerization of the free secondary amine bearing monomer 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate (TMPMA) by means of different controlled radical polymerization techniques (ATRP, RAFT, NMP). In particular, reversible addition‐fragmentation chain transfer (RAFT) polymerization enabled a good control at high conversions and a polydispersity index below 1.3, thereby enabling the preparation of well‐defined polymers. Remarkably, the polymerization of the secondary amine bearing methacrylate monomer was not hindered by the presence of the free amine that commonly induces degradation of the RAFT reagent. Subsequent oxidation of the polymer yielded the polyradical poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl methacrylate), which represents a valuable material used in catalysis as well as for modern batteries. The obtained polymers having a molar mass (Mn) of 10,000–20,000 g/mol were used to fabricate well‐defined, radical‐bearing polymer films by inkjet‐ printing. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Fundamentals of controlled/living radical polymerization (CRP) and Atom Transfer Radical Polymerization (ATRP), relevant to the synthesis of controlled polymer structures are described. Macromolecular brushes with star like structure are used as an example to illustrate synthetic power of ATRP.  相似文献   

18.
19.
A simple method to convert atom transfer radical polymerization (ATRP) initiators into reversible addition fragmentation chain-transfer (RAFT) mediators is reported. Poly(methylmethacrylate) (PMMA), poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and poly(ethylene glycol) (PEG) ATRP initiators were converted into their corresponding RAFT analogues using modified ATRP conditions for polymer chain activation in presence of bis(thiobenzoyl) disulphide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号