首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物质资源是一种储量丰富的可再生资源。生物质资源的高效利用不仅具有非常巨大的经济和生态价值,而且对新能源与生物基合成材料的可持续发展战略具有重大意义。由植物纤维素等生物质材料经生物或者简单化学过程处理,可获得丰富的生物基单体2,5-呋喃二甲酸(FDCA)。FDCA可用于生物基聚酯材料的合成。FDCA系列聚酯材料性能优异,可作为由石油基单体对苯二甲酸(PTA)而合成的芳香族聚酯材料(例如PET)的一种潜在的高性能生物可降解替代材料。本文简要说明了生物基单体FDCA的物性及制备方法,并重点阐述了包括聚呋喃二甲酸乙二酯(PEF)与聚呋喃二甲酸丁二酯(PBF)等一系列FDCA基聚酯材料的合成及性质,同时对FDCA基聚酯材料的应用进展进行了简要介绍,最后对FDCA基聚酯生物基合成材料的发展前景作了初步展望。  相似文献   

2.
In the present study, maleimide‐modified epoxide resin containing UV‐curable hybrid coating materials were prepared and coated on polycarbonate substrates in order to improve their surface properties. UV‐curable, bismaleimide‐modified aliphatic epoxy resin was prepared from N‐(p‐carboxyphenyl) maleimide (p‐CPMI) and cycloaliphatic epoxy (Cyracure‐6107) resin. The structure of the bismaleimide modified aliphatic epoxy resin was analyzed by FTIR and the characteristic absorption band for maleimide ring was clearly observed at 3100 cm?1. Silica sol was prepared from tetraethylorthosilicate (TEOS) and methacryloxy propyl trimethoxysilane (MAPTMS) by sol–gel method. The coating formulations with different compositions were prepared from UV‐curable bismaleimide‐based epoxy oligomer and sol–gel mixture. The molecular structure of the hybrid coating material was analyzed by 29Si‐CP/MAS NMR spectroscopy techniques. In the 29Si CP/MAS NMR spectrum of the hybrid coating, mainly two kinds of signals were observed at ?68 and ?110 ppm that correspond to T3 and Q4 peaks, respectively. This result shows that a fully condensed structure was obtained. The thermal and morphological properties of these coatings materials were investigated by using TGA and SEM techniques. Hardness and abrasion resistance properties of coating materials were examined and both were found to increase with sol–gel precursor content of the coating. The photopolymerization kinetics was investigated by using RT‐IR. 70% conversion was attained with the addition of 15 wt% of BMI resin into the acrylate‐based coating formulation. It was found that the UV‐curable organic–inorganic hybrid coatings improved the surface properties of polycarbonate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Biobased, unsaturated polyesters derived from isosorbide, maleic anhydride, and succinic acid were synthesized and characterized. The presence of maleic anhydride units in the structure of the polyesters allowed converting them into cured coatings by radical copolymerization with crosslinking agents such as 2‐hydroxyethyl methacrylate, N‐vinyl‐2‐pyrrolidinone, acrylic acid or methacrylamide. The investigated polyesters were obtained via bulk polycondensation, catalyzed by titanium(IV) n‐butoxide. 2D NMR and MALDI‐Tof‐MS spectroscopy proved that this polymerization resulted in isomerization of maleic acid units into fumaric ones and in the formation of slightly branched structures by the reaction of isosorbide (end) groups with main chain unsaturated bonds. Moreover, some double bonds proved to have reacted with the condensation by‐product water. The resulting polyesters displayed the expected correlation between variables such as molecular weight and content of unsaturated bonds and their Tg values. Since the thermal properties of the obtained polyesters were appropriate for coating applications, the polymers were crosslinked with unsaturated monomers by radical copolymerization. The crosslinking process was studied using FTIR spectroscopy and by measurements of the soluble part of the cured coatings. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2885–2895, 2010  相似文献   

4.
In this work, two polyesters and four copolyesters were studied. All materials were synthesized to obtain the monomers dedicated for thermoplastic polyurethane elastomers. For this type of PUR, the monomers should characterize by appropriate selected physicochemical properties and macromolecular structure distribution, which depends on synthesis conditions. The study of chemical structure with extensive and knowledgeable analysis of formed macromolecules of synthesized bio-based copolyesters was conducted with the use of FTIR and 1H NMR spectroscopy and MALDI-ToF mass spectrometry. The results allowed to propose the majority of probable chemical structures of macromolecules formed during synthesis. Moreover, the impact of the structure on the thermal stability of the obtained copolyesters was also determined with the use of thermogravimetric analysis. The temperature of the beginning of thermal decomposition equaled even 330 °C. Furthermore, the results of DSC-TG/QMS coupled method confirmed that all prepared polyesters degraded by α and β-hydrogen bond scission mechanisms.  相似文献   

5.
A series of aromatic polyesters has been prepared by low-temperature solution polycondensation of derivatives of dihydroxydinaphthyl or dihydroxydinaphthylmethane with terephthaloyl chloride. The chemical, physical, and thermal properties of some polyesters have been investigated. Some of the polyesters obtained have high melting temperatures (340–420°C) and very good thermal resistance. In spite of their high melting temperatures some polymers give solutions in organic solvents which make it possible to produce films and coatings with good dielectric and mechanical properties and with a relatively high thermal resistance.  相似文献   

6.
The application of N-heterocyclic carbene (NHC) catalysis to the polycondensation of diols and dialdehydes under oxidative conditions is herein presented for the synthesis of polyesters using fossil-based (ethylene glycol, phthalaldehydes) and bio-based (furan derivatives, glycerol, isosorbide) monomers. The catalytic dimethyl triazolium/1,8-diazabicyclo[5.4.0]undec-7-ene couple and stoichiometric quinone oxidant afforded polyester oligomers with a number-average molecular weight (Mn) in the range of 1.5–7.8 kg mol−1 as determined by NMR analysis. The synthesis of a higher molecular weight polyester (polyethylene terephthalate, PET) by an NHC-promoted two-step procedure via oligoester intermediates is also illustrated together with the catalyst-controlled preparation of cross-linked or linear polyesters derived from the trifunctional glycerol. The thermal properties (TGA and DSC analyses) of the synthesized oligoesters are also reported.  相似文献   

7.
A number of phenyl polyesters have been synthesized to furnish molecules whose backbones rearrange under ultraviolet irradiation to an o-hydroxybenzophenone structure. This photochemical Fries rearrangement produces ultraviolet opacity in the irradiated film while maintaining visual transparency. Thin coatings of these polyesters completely protect substrates ordinarily sensitive to ultraviolet light. Spectroscopic analysis of various rearranged films and coatings clearly shows that the o-hydroxybenzophenone polymer formed is concentrated at the irradiated surface of the original polyester coating as a “skin”. Such a skin, formed in situ during the irradiation, functions to protect both the original polyester coating as well as the coated substrate from degradation by ultraviolet irradiation. Furthermore, a significant “healing” mechanism appears inherent in these coatings, for as the exposed skin ultimately degrades under extended ultraviolet irradiation, more of the underlying polyester layer apparently rearranges to compensate for the loss. Thus the clear coating functions both as a protective skin and a rearrangeable reservoir. Modified structures of the polyesters have been prepared which possess, in addition to their protective film properties, a useful solubility spectrum and a good solution shelf life.  相似文献   

8.
10B containing organic–inorganic hybrid coating material based on a UV-curable formulation was prepared via anhydrous sol–gel technique. UV curable coatings were applied on Plexiglas (PMMA) substrates. The molecular structure of the coating material was analyzed by ATR-FTIR spectroscopy technique. The characterization of the UV-curable coating was evaluated by various techniques such as gel content, abrasion resistance, chemical resistance, pencil hardness, pendulum hardness, MEK rubbing test, contact angle, cross-cut test, gloss, transmittance test, neutron absorption, Limiting Oxygen Index and stress–strain tests. Hybrid coatings showed a significant enhancement in radiation shielding properties. The thermal behavior of coatings was also evaluated. It is observed that the thermal stability of coatings mainly depends on their boron and silicate contents. Results of all analysis conducted on hybrid films, and coatings were discussed.  相似文献   

9.
This article presents the studies on the thermal and viscoelastic properties of novel epoxy-dicyclopentadiene-terminated polyesters-styrene copolymers. The novel materials were prepared during a three step process including the addition reaction of maleic acid to norbonenyl double bond of dicyclopentadiene; polycondensation of acidic ester of dicyclopentadiene, cyclohex-4-ene-dicarboxylic anhydride, maleic anhydride, and suitable glycol: ethylene, diethylene, or triethylene glycol; and the epoxidation process of prepared polyesters. It allowed obtaining novel epoxy-dicyclopentadiene-terminated polyesters which were successfully used as a component of different styrene content (10?C80?mass%) copolymers. The influence of the structures of polyester and styrene content on the cross-linking density (v e), tg?? max, tg?? max height, storage modulus (E?? 20?°C), FWHM values as well as the thermal stability of copolymers was evaluated by TG, DSC, and DMA analyses and discussed.  相似文献   

10.
A series of UV-curable nanocomposite coating materials were prepared by sol–gel technique from tetraethoxysilane (TEOS), methacryloxypropyltrimethoxysilane (MAPTMS) in the presence of urethane acrylate resin based on polyethylene glycol 400 (PEG400). The sol–gel precursor content in the hybrid coatings was varied from 0 to 30 wt.%. In addition, acrylated phenylphosphine oxide oligomer (APPO) is replaced with urethane acrylate resin in order to investigate its effect on the nanocomposite property. The physical and mechanical properties such as; gel content, hardness, adhesion, gloss, impact strength as well as tensile strength were examined. Results from these measurements showed that all the properties of the hybrid coatings improved effectively by gradual increase in sol–gel precursor and APPO resin content. The real time infrared technique was used to follow the degree of acrylic double bond conversion. The thermal stabilities of the UV-cured nanocomposites were investigated by thermogravimetric analysis. The results revealed that the addition of sol–gel precursor and APPO oligomer into the organic network leads to an improvement in the thermal and flame resistance properties of the hybrid materials. It was also determined that the APPO containing hybrid coating with 20 wt.% silica content gave higher char yield than the coating without APPO. It is a desirable achievement to improve simultaneously both the flame retardancy and mechanical properties of a protective coating. SEM studies indicated that inorganic particles were dispersed homogenously through the organic matrix. The hybrids were nanocomposite. It was also found that, incorporation of APPO resin might govern the silica organization and this leading to formation of nanofibrillar structure.  相似文献   

11.
A series of copolymers poly(butylene 2,6-naphthalate-co-butylene furandicarboxylate) (PBNFs) derived from 2,5-furandicarboxylic acid (FDCA) were synthesized. The molecular weight, microstructures, thermal and mechanical properties were characterized. DSC results show that PBN and PBNF25 can crystallize rapidly. However, the crystallization rates of PBNF50, PBNF75 and PBF are very slow. The Td,5% and Td,max values of all polyesters were higher than 360 °C and 390 °C, respectively. Compared with PBN, PBNF25, PBNF50, PBNF75 and PBF exhibited much higher elongation at break (214–295%) and bio-based content (46–100%).  相似文献   

12.
A series of semi-aromatic polyesters named as Poly(PO-CHO-PA) were facilely synthesized via ring-opening terpolymerization of biobased cyclohexane oxide(CHO)/propylene oxide(PO)/phthalic anhydride(PA) using economical U1/PPNCl as dual catalyst. The proportion of CHO-PA and PO-PA segments in polymer can be readily altered by changing the feed ratio of CHO/PO because the reactivity ratios of CHO and PO with PA calculated by Fineman-Ross method are comparable. All synthesized amorphous polyesters w...  相似文献   

13.
In rapid prototyping (RP), building 3D physical prototypes involves the addition of material in layers. The sol-gel route is an alternative to produce multicomponent oxide materials with chemical, physical and thermal properties that cannot be obtained by other processes. The sol-gel method allows for the preparation of coatings on several kinds of materials, directly influencing the materials’ properties. In this work, metal oxides were prepared by the sol-gel process and deposited further by dip-coating technique on ABS and Nylon substrates obtained by RP. The resulting coating presented good adhesion to the substrates. The obtained materials were characterized by scanning electron microscopy (SEM) and thermal analysis (TA).  相似文献   

14.
含氟高分子/SiO2杂化疏水材料的制备及涂层表面性质   总被引:1,自引:0,他引:1  
采用自由基溶液聚合与溶胶-凝胶法相结合的方法制备了含氟高分子/SiO2杂化疏水材料.通过甲基丙烯酸十二氟庚酯(FA)与乙烯基三乙氧基硅烷(VTES)共聚合成了含氟硅共聚物(PFAS),进一步通过原硅酸乙酯(TEOS)与PFAS共聚物溶液共水解缩聚制备了具有含氟侧基的碳碳主链高分子和硅氧网络的含氟高分子/SiO2杂化疏水材料.研究结果表明,SiO2组分含量提高可以显著增加杂化材料薄膜的涂敷厚度,改善其耐久性能,而对杂化材料疏水性能的影响不大.  相似文献   

15.
Thin films of YMnO3 are proposed as a new candidate for non-volatile ferroelectric memory devices. They were prepared via solutions through two different processes: thermal decomposition and reflux using yttrium acetate tetrahydrate and manganese acetate tetrahydrate as starting materials. For coatings prepared by thermal decomposition process, the starting materials were dissolved in ethanol containing diethanolamine, and single phase YMnO3 was obtained with heat-treatment at 900°C. When the starting materials were refluxed using 2-ethoxyethanol as a solvent, single phase YMnO3 was obtained with heat-treatment at 800°C. Scanning electron microscopy showed that the 300 nm thick films with a stoichiometric Y/Mn ratio had many pinholes, and a very large dielectric loss, 0.83 at 100 kHz. Inclusion of 5–10% excess of Y in the coating solution produced dense structures with improved dielectric properties. The dielectric constant and loss tangent of the thin films with Y/Mn ratio of 1.00/0.90 were about 20 and 0.05 at 100 kHz, respectively.  相似文献   

16.
Poly(ethylene succinate) (PES), poly(trimethylene succinate) (PTS) and their copolyesters with various compositions were synthesized through a direct polycondensation reaction with titanium tetraisopropoxide as the catalyst. The results of intrinsic viscosity and GPC have proven successful in preparing high molecular weight polyesters. The compositions and the sequence distributions of the copolyesters were determined by analyses of 1H NMR and 13C NMR spectra. The sequence distributions of ethylene succinate units and trimethylene succinate (TS) units were found to be random. Their thermal properties were characterized using differential scanning calorimeter and thermal gravimetric analyzer. All of the copolymers exhibit a single glass transition temperature (Tg). There is no significant difference in the thermal stability among these polyesters. Wide angle X-ray diffractograms (WAXD) were obtained for polyesters which can be crystallized isothermally. The results of thermal analysis and the WAXD patterns indicate that the incorporation of TS units into PES significantly inhibits the crystallization behavior of PES. Additionally, the crystal pattern of PTS is quite different from that of PES. Dynamic mechanical properties of moldable polyesters were investigated using a Rheometer operated at 1 Hz. Below Tg, the incorporation of TS units into PES results in the decline of storage modulus. Above Tg, the effect of crystallinity on the storage modulus can be found.  相似文献   

17.
To achieve high temperature stable insulation materials for the electrical insulation of fine copper wires two different bis(alkoxysilylalkyl)pyromellitamide acids 1 and 2 were prepared. These organic–inorganic sol–gel hybrid precursors were obtained via reactions of pyromellitic dianhydride and alkoxysilylalkylamines. The molecular single-source precursors 1 and 2 were comprehensively studied using FT-IR, 1H, 13C and 29Si NMR spectroscopy as well as elemental analyses. Besides, the hydrolysis and condensation processes of the different precursors were examined with solution 29Si NMR spectroscopy. The imidization process was investigated using 13C NMR spectroscopy, FT-IR spectroscopy as well as thermal analysis methods. The different precursors were applied to coat fine copper wires using an industrial coating device. The obtained coatings were cured at temperatures between 380 and 425 °C, and tested regarding thicknesses, number of pinholes, electrical breakdown voltage and elongation. FT-IR spectroscopy was used to determine the chemical structure and scanning electron microscopy to investigate the morphology of the coating materials. The obtained coatings showed very promising mechanical, thermal and electrical properties, i.e. highest breakdown voltage values well above 200 V/µm. They possess high flexibility without cracking and no pinholes or other defects were detected.  相似文献   

18.
饱和聚酯作为减缩剂的优点是制品表面光洁,所得低收缩UP-树脂透明度较好,往往为半透明,使制品外观与原UP-树脂差不多,从而扩大了制品的用途。我们在酸和醇的种类及比例上进行了探索,合成了7种低分子量饱和聚酯并测试了它们的减收缩效果。发现芳香族聚酯具有更好的减收缩性能,其中具有封端结构的效果更佳。此外,制备了几种无填料浇  相似文献   

19.
贾梦秋 《高分子科学》2013,31(7):974-983
Hybrid materials based on polymethylphenylsiloxane (PMPS) and organic functionalized silica were synthesized via condensation reaction between silanol and alkoxysilyl groups in the presence of quaternary ammonium hydroxide. The structure of prepared materials was investigated by FTIR and NMR, which indicate that the products have incorporated modified silica into the polymer matrix. The prepared hybrid materials show a satisfactory thermal resistance because the initial decomposition of typical product occurred at nearly 100 K higher than that of the pure polymer according to the thermogravimetric analysis (TGA) results. Differential thermogravimetric analysis (DTGA) data confirm that the thermal degradation of prepared hybrid materials comprises of two steps, of which the first one could be controlled by adjusting the content of silica particles and the ratio of surface groups on the particles. The coating films obtained from hybrid products exhibit good thermal mechanical properties. Therefore, the materials are hoped to be used for the application in thermal resistant coating.  相似文献   

20.
In this study, a series of ultraviolet (UV)‐curable organic–inorganic hybrid coating materials containing phosphorus were prepared by sol–gel approach from acrylate end‐capped urethane resin, acrylated phenyl phosphine oxide oligomer (APPO), and inorganic precursors. TEOS and MAPTMS were used to obtain the silica network and Ti:acac complex was employed for the formation of the titania network in the hybrid coating systems. Coating performance of the hybrid coating materials applied on aluminum substrates was determined by the analysis techniques, such as hardness, gloss, impact strength, cross‐cut adhesion, taber abrasion resistance, which were accepted by international organization. Also, stress–strain test of the hybrids was carried out on the free films. These measurements showed that all the properties of the hybrids were enhanced effectively by gradual increase in sol–gel precursors and APPO oligomer content. The thermal behavior of the hybrid coatings was investigated by thermogravimetric analysis (TGA) analysis. The flame retardancy of the hybrid materials was examined by the limiting oxygen index (LOI); the LOI values of pure organic coating (BF) increased from 31 to 44 for the hybrid materials containing phosphorus (BF‐P:40/Si:10). The data from thermal analysis and LOI showed that the hybrid coating materials containing phosphorus have higher thermal stability and flame resistance properties than the organic polymer. Besides that, it was found that the double bond conversion values for the hybrid mixtures were adequate in order to form an organic matrix. The polycondensation reactions of TEOS and MAPTMS compounds were also investigated by 29Si‐NMR spectroscopy. SEM studies of the hybrid coatings showed that silica/titania particles were homogenously dispersed through the organic matrix. In addition, it was determined that the hybrid material containing phosphorus and silica showed fibrillar structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号