首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The synthesis, characterization, and photophysical and photovoltaic properties of two anthracene‐containing wide‐band‐gap donor and acceptor (D–A) alternating conjugated polymers ( P1 and P2 ) are described. These two polymers absorb in the range of 300–600 nm with a band gap of about 2.12 eV. Polymer solar cells with P1 :PC71BM as the active layer demonstrate a power conversion efficiency (PCE) of 2.23% with a high Voc of 0.96 V, a Jsc of 4.4 mA cm−2, and a comparable fill factor (FF) of 0.53 under simulated solar illumination of AM 1.5 G (100 mW cm−2). In addition, P2 :PC71BM blend‐based solar cells exhibit a PCE of 1.42% with a comparable Voc of 0.89 V, a Jsc of 3.0 mA cm−2, and an FF of 0.53.

  相似文献   


2.
New D-π-A-π-A type organic dyes were synthesized and characterized as sensitizers for dye-sensitized solar cells (DSSCs). These dyes showed wide absorption spectra (300–625 nm) and high molar extinction coefficients (ε467 nm = 60,911 M−1 cm−1). As dye sensitizers in DSSC, the D-π-A-π-A dye having a cyanoacrylic acid as an acceptor gave the best cell performance with a short-circuit photocurrent density (Jsc) of 7.14 mA/cm2, an open-circuit voltage (Voc) of 0.62 V, and a fill factor (FF) of 0.72, corresponding to an overall conversion efficiency η of 3.19%.  相似文献   

3.
A novel donor–acceptor ( D–A ) copolymer comprising of weak electron donating BDT moiety and strong 9‐(2‐octyldodecyl)?8H‐pyrrolo[3,4‐b] bisthieno[2,3‐f:3',2'‐h] quinoxaline‐8,10(9H)‐dione (PTQD) unit denoted as P(PTQD‐BDT) was synthesized as donor material for polymer solar cells. P(PTQD‐BDT) shows a broad visible‐near‐infrared absorption band with an optical bandgap of 1.74 eV and possesses a relatively low‐lying HOMO level at ?5.28 eV. Bulk‐heterojunction polymer solar cell with the optimized blend of 1:2 (weight ratio) P(PTQD‐BDT):PC71BM (processed with chloroform) shows an open circuit voltage of 0.92 V, a short circuit current density of 7.84 mA/cm2, and a fill factor of 0.50, achieving a power conversion efficiency (PCE) of 3.61%. The PCE has been further improved to 5.55 % (Jsc = 10.34 mA/cm2, Voc = 0.88V and FF = 0.61), when 3% v ol 1,8‐diio‐dooctane (DIO) was used as solvent additive for the processing of P(PTQD‐BDT):PC71BM blended film. The enhancement in Jsc is as a result of the appropriate morphology and efficient exciton dissociation into free charge carrier. The increase in PCE has been attributed to the favorable nanoscale morphology for efficient exciton dissociation and charge transport (reduction in the electron to hole mobility ratio). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2390–2398  相似文献   

4.
Photovoltaic performance of the organic solar cells(OSCs)based on 2-((5′-(4-((4-((E)-2-(5′-(2,2-dicyanovinyl)-3′,4-dihexyl-2,2′-bithiophen-5-yl)vinyl)phenyl)(phenyl)amino)styryl)-4,4′-dihexyl-2,2′-bithiophen-5-yl)methylene)malononitrile(L(TPAbTV-DCN))as donor and PC70BM as acceptor was optimized using 0.25 vol%high boiling point solvent additive of1-chloronaphthalene(CN),1,6-hexanedithiol(HDT),or 1,8-diodooctane(DIO).The optimized OSC based on L(TPA-bTVDCN)–PC70BM(1:2,w/w)with 0.25 vol%CN exhibits an enhanced power conversion efficiency(PCE)of 2.61%,with Voc of0.87 V,Jsc of 6.95 mA/cm2,and FF of 43.2%,under the illumination of 100 mW/cm2 AM 1.5 G simulated solar light,whereas the PCE of the OSC based on the same active layer without additive is only 1.79%.The effect of the additive on absorption spectra and the atomic force microscopy images of L(TPA-bTV-DCN)–PC70BM blend films were further investigated.The improved efficiency of the device could be ascribed to the enhanced absorption and optimized domain size in the L(TPA-bTV-DCN)–PC70BM blend film.  相似文献   

5.
Four organic donor-π-conjugated-acceptor (D-π-A) type II dyes with different thiophene linkers are reported for dye sensitized solar cells (DSSCs). For the first time, a donor (triphenylamine) was introduced in type II sensitizers, and 2-hydroxybenzonitrile as acceptor/anchoring moiety was covalently linked TiO2 particles. The dye LS203 in this series gives the best solar energy conversion efficiency of 3.4%, with Jsc = 7.4 mA cm−2, Voc = 0.67 V, FF = 0.69, the maximum IPCE value reaches 66.9%.  相似文献   

6.
Lu Zhang 《Tetrahedron》2010,66(18):3318-16
Four triarylamine derivatives (XS6-9) containing N,N-dimethylaryl amine units as secondary electron-donating groups are designed and synthesized. These dyes were applied into nanocrystalline TiO2 dye-sensitized solar cells through standard operations. For a typical device the maximal monochromatic incident photon-to-current conversion efficiency (IPCE) can reach 93%, with a short-circuit photocurrent density (Jsc) 10.8 mA cm−2, an open-circuit photovoltage (Voc) 690 mV, and fill factor (FF) 0.61, which corresponds to an overall conversion efficiency of 4.54%.  相似文献   

7.
Four ethynylene‐containing donor‐acceptor alternating conjugated polymers P1 – P4 with 2,5‐bis(dodecyloxy) substituted phenylene or carbazole as the donor unit and benzothiadiazole (BTZ) as the acceptor unit were synthesized and used as donor polymers in bulk heterojunction polymer solar cells. The optical, electrochemical, and photovoltaic properties of these four polymers with the ethylene unit located at different positions of the polymer chains were systematically investigated. Our results demonstrated that absorption spectra and the HOMO and LUMO energy levels of polymers could be tuned by varying the position of the ethynylene unit in the polymer chains. Photovoltaic devices based on polymer/PC71BM blend films spin coated from chloroform and dichlorobenzene solutions were investigated. For all four polymers, open circuit voltages (Voc) higher than 0.8 V were obtained. P4 , with ethynylene unit between BTZ and thiophene, shows the best performance among these four polymers, with a Voc of 0.94 V, a Jsc of 4.2 mA/cm2, an FF of 0.40, and a PCE of 1.6%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
9.
Two β‐cyano‐thiophenevinylene‐based polymers containing cyclopentadithiophene ( CPDT‐CN ) and dithienosilole ( DTS‐CN ) units were synthesized via Stille coupling reaction with Pd(PPh3)4 as a catalyst. The effects of the bridged atoms (C and Si) and cyano‐vinylene groups on their thermal, optical, electrochemical, charge transporting, and photovoltaic properties were investigated. Both polymers possessed the highest occupied molecular orbital (HOMO) levels of about ?5.30 eV and the lowest unoccupied molecular orbital (LUMO) levels of about ?3.60 eV, and covered broad absorption ranges with narrow optical band gaps (ca. 1.6 eV). The bulk heterojunction polymer solar cell (PSC) devices containing an active layer of electron‐donor polymers ( CPDT‐CN and DTS‐CN ) blended with an electron‐acceptor, that is, [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM), in different weight ratios were explored under 100 mW/cm2 of AM 1.5 white‐light illumination. The PSC device based on DTS‐CN: PC71BM (1:2 w/w) exhibited a best power conversion efficiency (PCE) value of 2.25% with Voc = 0.74 V, Jsc = 8.39 mA/cm2, and FF = 0.36. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

10.
A pentacyclic benzodipyrrolothiophene ( BDPT ) unit, in which two outer thiophene rings are covalently fastened with the central phenylene ring by nitrogen bridges, was synthesized. The two pyrrole units embedded in BDPT were constructed by using one‐pot palladium‐catalyzed amination. The coplanar stannylated Sn‐BDPT building block was copolymerized with electron‐deficient thieno[3,4‐c]pyrrole‐4,6‐dione ( TPD ), benzothiadiazole ( BT ), and dithienyl‐diketopyrrolopyrrole ( DPP ) acceptors by Stille polymerization. The bridging nitrogen atoms make the BDPT motif highly electron‐abundant and structurally coplanar, which allows for tailoring the optical and electronic properties of the resultant polymers. Strong photoinduced charge‐transfer with significant band‐broadening in the solid state and relatively higher oxidation potential are characteristic of the BDPT‐based polymers. Poly(benzodipyrrolothiophene‐alt‐benzothiadiazole) ( PBDPTBT ) achieved the highest field‐effect hole mobility of up to 0.02 cm2 V?1 s?1. The photovoltaic device using the PBDPTBT /PC71BM blend (1:3, w/w) exhibited a Voc of 0.6 V, a Jsc of 10.34 mA cm?2, and a FF of 50 %, leading to a decent PCE of 3.08 %. Encouragingly, the device incorporating poly(benzodipyrrolothiophene‐alt‐thienopyrrolodione) ( PBDPTTPD )/PC71BM (1:3, w/w) composite delivered a highest PCE of 3.72 %. The enhanced performance arises from the lower‐lying HOMO value of PBDPTTPD to yield a higher Voc of 0.72 V.  相似文献   

11.
A series of simple phenothiazine‐based dyes, namely, TP , EP , TTP , ETP , and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye‐sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc=15.2 mA cm?2, Voc=0.783 V, fill factor (FF)=0.679) and 7.87 % (Jsc=16.1 mA cm?2, Voc=0.717 V, FF=0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I?/I3? redox couple. By replacing the T group with the E unit, EP ‐based DSSCs had a slightly lower PCE of 7.98 % with a higher short‐circuit photocurrent (Jsc) of 16.7 mA cm?2. The dye ETP , with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP , with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.  相似文献   

12.
A series of heteroleptic bis(tridentate) RuII complexes featuring N^C^N‐cyclometalating ligands is presented. The 1,2,3‐triazole‐containing tridentate ligands are readily functionalized with hydrophobic side chains by means of click chemistry and the corresponding cyclometalated RuII complexes are easily synthesized. The performance of these thiocyanate‐free complexes in a dye‐sensitized solar cell was tested and a power conversion efficiency (PCE) of up to 4.0 % (Jsc=8.1 mA cm?2, Voc=0.66 V, FF=0.70) was achieved, while the black dye ((NBu4)3[Ru(Htctpy)(NCS)3]; Htctpy=2,2′:6′,2′′‐terpyridine‐4′‐carboxylic acid‐4,4′′‐dicarboxylate) showed 5.2 % (Jsc=10.7 mA cm?2, Voc=0.69 V, FF=0.69) under comparable conditions. When co‐adsorbed with chenodeoxycholic acid, the PCE of the best cyclometalated dye could be improved to 4.5 % (Jsc=9.4 mA cm?2, Voc=0.65 V, FF=0.70). The PCEs correlate well with the light‐harvesting capabilities of the dyes, while a comparable incident photon‐to‐current efficiency was achieved with the cyclometalated dye and the black dye. Regeneration appeared to be efficient in the parent dye, despite the high energy of the highest occupied molecular orbital. The device performance was investigated in more detail by electrochemical impedance spectroscopy. Ultimately, a promising RuII sensitizer platform is presented that features a highly functionalizable “click”‐derived cyclometalating ligand.  相似文献   

13.
《中国化学》2018,36(7):599-604
Four copolymers (XP10, XP11, XP12 and XP13) based on diketopyrrolopyrrole (DPP) and carbazole units with tetrathiophene porphyrin (TTP) side chains linked by a flexible alkyl‐interval were designed and synthesized. The effects of the introduction of TTP on the optical and electrochemical properties, the morphology, the mobility and the photovoltaic performance of copolymers were systematically studied. The results revealed that XP11 with a TTP/DPP ratio of 2/8 possessed the best performances, i.e., broad absorption spectra, balanced hole/electron mobility and suitable microphase separation. After optimizing via solution vapor annealing, the organic solar cell devices based on XP11 and PC71BM showed the best power conversion efficiency of 5.11% with a short‐circuit current density (Jsc) of 10.36 mA·cm–2, an open‐circuit voltage (Voc) of 0.77 V, and a fill factor (FF) of 0.64.  相似文献   

14.
Three organic sensitizers JK-87, JK-88, and JK-89 containing a bulky spirobifluorene unit in the bridged group are designed and synthesized. Under standard global A.M. 1.5 solar condition, the JK-89 sensitized cell gave a short-circuit photocurrent density (Jsc) of 13.02 mA cm−2, an open-circuit voltage (Voc) of 0.75 V, and a fill factor of 0.70, corresponding to an overall conversion efficiency η of 6.83%. The η of JK-89 is higher than those of other two cells due to the larger Jsc. The improved Jsc value is mainly attributed to the broad and red-shifted absorption band.  相似文献   

15.
6,7-Dialkoxy-2,3-diphenylquinoxaline based narrow band gap conjugated polymers, poly[2,7-(9-octyl-9H-carbazole)-alt-5,5-(5,8-di-2-thinenyl-(6,7-dialkoxy-2,3-diphenylquinoxaline))] (PCDTQ) and poly[2,7-(9,9-dioctylfluorene)-alt-5,5-(5,8-di-2-thinenyl-(6,7-dialkoxy-2,3-diphenylquinoxaline))] (PFDTQ), have been synthesized by Suzuki polycondensation. Their optical, electrochemical, transport and photovoltaic properties have been investigated in detail. Hole mobilities of PCDTQ and PFDTQ films spin coated from 1,2-dichlorobenzene (DCB) solutions are 1.0 × 10-4 and 4.1 × 10-4 cm2V-1s-1, respectively. Polymer solar cells were fabricated with the as-synthesized polymers as the donor and PC61BM and PC71BM as the acceptor. Devices based on PCDTQ:PC71BM (1:3) and PFDTQ:PC71BM (1:3) fabricated from DCB solutions demonstrated a power conversion efficiency (PCE) of 2.5% with a Voc of 0.95 V and a PCE of 2.5% with a Voc of 0.98 V, respectively, indicating they are promising donor materials.  相似文献   

16.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
Duckhyun Kim  Jaejung Ko 《Tetrahedron》2007,63(9):1913-1922
Organic dyes containing N-aryl carbazole moiety are designed and synthesized. Under standard global AM 1.5 solar condition, the JK-25 sensitized cell gave a short circuit photocurrent density (Jsc) of 11.50 mA cm−2, an open circuit voltage (Voc) of 0.68 V, a fill factor of 0.66, corresponding to an overall conversion efficiency η of 5.15%, and the maximum incident monochromatic photon-to-current conversion efficiency (IPCE) of 77% at 430 nm.  相似文献   

18.
A series of new-type of donor-π-acceptor dyes (TCT-1-6) utilizing 1,3,5-triazine as π spacers were synthesized. These dyes were characterized by 1H NMR, ESI-MS, EA, and X-ray crystallography. Their photovoltaic performances were also investigated. An overall photon-to-electron conversion efficiency of 1.8% was achieved with the DSSC based on the dye TCT-1(Jsc = 3.33 mA/cm2, Voc = 757 mV, FF = 71.8%) under AM 1.5G illumination (100 mW/cm2).  相似文献   

19.
In order to improve the solution processability of 4,7‐bis(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole (DTBT)‐based polymers, novel donor–acceptor polymer PTOBDTDTBT containing DTBT and benzo[1,2‐b:4,5‐b′]dithiophene (BDT) with conjugated side chain is designed and synthesized with narrow band gap 1.67 eV and low lying HOMO energy level −5.4 eV. The blend film of PTOBDTDTBT and PC71BM exhibits uniform and smooth film with root‐mean‐square (RMS) surface roughness 1.15 nm because of the excellent solubility of PTOBDTDTBT when six octyloxy side chains are introduced. The hole mobility of the blend film is measured to be 4.4 × 10−5 cm2 V−1s−1 by the space‐charge‐limited current (SCLC) model. The optimized polymer solar cells (PSCs) based on PTOBDTDTBT /PC71BM exhibits an improved PCE of 6.21% with Voc = 0.80 V, Jsc = 11.94 mA cm−2 and FF = 65.10%, one of the highest PCE in DTBT containing polymers.

  相似文献   


20.
Organic dyes containing indolo[1,2-f]phenanthridine unit are a promising new class of sensitizers for dye-sensitized solar cells, as a result of their broad and intense visible absorptions. Under standard global AM 1.5 solar condition, the JK-61 sensitized cell gave a short circuit photocurrent density (Jsc) of 15.81 mA cm−2, an open circuit voltage (Voc) of 0.73 V, a fill factor of 0.72, corresponding to an overall conversion efficiency of 8.34%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号