首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potassium isopropoxide and potassium tetraethylene glycoxide vinyl ether as well as small amounts of dipotassium tri- and tetraethylene glycoxides are formed in the initiation step of propylene oxide polymerization by K, K+(15-crown-5)2. Chain transfer reactions occur during the polymerization. Therefore, macromolecules with various starting groups, i.e. with the isopropyl, vinyl, allyl, and propenyl ones, are obtained in the process. The kind of end groups generally depends on the quenching agent used for termination. However, the macromolecules terminated in the chain transfer reactions possess exclusively the hydroxyl end group. The functionality of protonated polymers is equal to about 1.2 as a result of propagation occurring on dipotassium glycoxides.  相似文献   

2.
Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the presence of surfactant. The intercalated structure and high aspect ratio of OLDH were verified by X-ray diffraction(XRD) and scanning electron microscopy(SEM). A series of poly(propylene carbonate)(PPC)/OLDH composite films with different contents of OLDH were prepared via a melt-blending method. Their cross section morphologies, gas barrier properties and tensile strength were investigated as a function of OLDH contents. SEM results show that OLDH platelets are well dispersed within the composites and oriented parallel to the composite sheet plane. The gas barrier properties and tensile strength are obviously enhanced upon the incorporation of OLDH. Particularly, PPC/2%OLDH film exhibits the best barrier properties among all the composite films. Compared with pure PPC, the oxygen permeability coefficient(OP) and water vapor permeability coefficient(WVP) is reduced by 54% and 17% respectively with 2% OLDH addition. Furthermore, the tensile strength of PPC/2%OLDH is 83% higher than that of pure PPC with only small lose of elongation at break. Therefore, PPC/OLDH composite films show great potential application in packaging materials due to its biodegradable properties, superior oxygen and moisture barrier characteristics.  相似文献   

3.
Sakharov  A. M.  Il"in  V. V.  Rusak  V. V.  Nysenko  Z. N.  Klimov  S. A. 《Russian Chemical Bulletin》2002,51(8):1451-1454
Copolymerization of carbon dioxide with propylene oxide in the presence of zinc adipate was studied. The effects of the temperature, nature of the solvent, and catalyst concentration on the molecular weight, molecular-weight distribution, and yields of the copolymer and propylene carbonate were examined. The structure of the polymer obtained was studied by 13N and 1I NMR spectroscopy.  相似文献   

4.
The isomerization of allyl ether to propenyl ether end group in anionically-polymerized poly (propylene oxide) was monitored by 1H NMR spectroscopy. It was confirmed that the reaction followed a simple second-order rate law: ?d[allyl]dt = k2[allyl] [O?]. Values of k2 determined over the 90–130°C temperature range, indicated an activation energy of 116 kJ mol?1. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Modified graphite oxide (MGO)/Poly (propylene carbonate) (PPC) composites with excellent thermal and mechanical properties have been prepared via a facile solution intercalation method. An intercalated structure of MGO/PPC composites was confirmed by X-ray diffraction and scanning electron microscope. The thermal and mechanical properties of MGO/PPC composites were investigated by thermal gravimetric analysis, differential scanning calorimetric, dynamic mechanical analysis, and electronic tensile tester. Due to the nanometer-sized dispersion of layered graphite in PPC matrix and the strong interfacial interaction between MGO and PPC, the prepared MGO/PPC composites exhibit improved thermal and mechanical properties in comparison with pure PPC. Compared with pure PPC, the MGO/PPC composites show the highest thermal stability and the Tg is 13.8 °C higher than that of pure PPC, while the tensile strength (29.51 MPa) shows about 2 times higher than that of pure PPC when only 3.0 wt.% MGO is incorporated. These results indicate that this approach is an efficient method to improve the properties of PPC.  相似文献   

6.
A novel copolymer of polyaniline-poly(propylene oxide) (PAN-PPO) was prepared by cyclic voltammetry (CV) and characterized by FFIR and SEM. It showed good electroactivity for methanol oxidation in H2SO4 solution.  相似文献   

7.
Tandem Haller-Bauer-scission/Grob-fragmentation reaction of cyclopentanone bearing a leaving group in β-position involves antiperiplanar arrangements which can be also achieved from epimeric derivatives, probably due to the high flexibility of the five-membered ring. We have observed that epimeric compounds react at different rates if the leaving group is a halogen and leads to very different types of compounds when it is a mesyl group.  相似文献   

8.
Zinc glutarate (ZnGA) synthesized from zinc oxide and glutarate acid was dispersed on the surface of acid-treated montmorillonite (MMT) in quinoline to prepare ZnGA-MMT catalyst. The results of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) measurements indicated that the ZnGA on the surface of acid-treated MMT had the same crystalline structure as pure ZnGA. Copolymerization between CO2 and propylene oxide (PO) was carried out under optimized reaction conditions using ZnGA-MMT catalyst, consequently giving poly(propylene carbonate) (PPC) with high molecular weight in a very high yield (115.2 g polymer per gram of ZnGA). The obtained PPCs were investigated using 13C NMR and FTIR spectra, showing a completely alternating structure. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) examinations showed the PPCs with a high transition temperature of 38 °C and a very high decomposition temperature (>250 °C) due to the presence of MMT residual in polymer.  相似文献   

9.
In this work, the influence of three different initiators (KOH, KOH dissolved in ethanol and the potassium salt of ethylene glycol) on the propylene oxide polymerization was studied by experimental and theoretical methods. A first series of reactions was carried out to establish the adequate thermal conditions for a minimal monomer transfer during the polymerization. The formation of end insaturations (main consequence of the monomer transfer interference) in the poly(propylene oxide) chains was studied by spectroscopic methods. Furthermore, a second series of poly(propylene oxide)s was prepared by using the mentioned initiators, and characterized by size exclusion chromatography. The initiator efficiency to create active centers in every reactive system was determined from the molecular weight and the conversion data obtained. Experimental results were elucidated by using quantum chemical calculations at density functional theory level, involving thermo-chemistry parameters, and the simulation of the infrared, and 13C nuclear magnetic resonance spectra. This method led to studying the addition of up to ten propylene oxide unit, resulting into important energetic tendencies and regioselectivity, being compared to the physicochemical data of products obtained. These correlations meant further understanding of the reaction course and the type of products obtained, depending on the nature of the initiator.  相似文献   

10.
采用DSC对环氧丙烷聚醚三元醇/左旋聚乳酸三枝链嵌段共聚物(PPO-b-PLLA)的熔体结晶行为进行了研究. 在388~407 K范围内, 分别采用Avrami方程和Arrhenius方程进行了结晶动力学计算. Avrami指数n值约为2.2, 表明共聚物以二维生长方式进行晶体生长. 基于LH结晶理论, 对三枝链嵌段共聚物的结晶机理进行了探讨. 实验发现该体系共聚物的Regime II和Regime III转变温度随着n(PO)∶n(LA)的增大而变化, Kg (III)/Kg (II)=2.0~2.2, 与LH理论预期值吻合. 实验结果表明三枝链的PPO链段对PLLA链段的结晶有很大影响, 使其成核较均聚物困难. 链折叠自由能σe和链折叠功q均高于PLLA的值.  相似文献   

11.
The synthesis, characterization and thermal behavior of two biodegradable aliphatic polyesters poly(propylene azelate) (PPAz) and poly(propylene sebacate) (PPSeb) are described in the present work. The thermal degradation of both polyesters was studied using thermogravimetric analysis (TG) by the determination of their mass losses during heating. From the thermogravimetric curves it can be seen that both polyesters are thermally stable materials since PPAz has its highest decomposition rate at 411.3 while PPSeb at 413.6 °C. From the variation of activation energy (E) with increasing degree of conversion it is found that the polyester's decomposition proceeds with a complex reaction mechanism with the participation of at least two different mechanisms. To evaluate these mechanisms the TG, FTIR and a combination of TG-gas chromatography-mass spectrometry (TG/GC-MS) methods were used. From mass ions detection of formed decomposition compounds, it was found that the decomposition of both polymers takes place, mainly, through β-hydrogen bond scission and secondarily through α-hydrogen bond scission. The main decomposition products are aldehydes, alcohols, allyl, diallyl, and carboxylic acids.  相似文献   

12.
The proposed method of channeled spectrum employs the recorded channeled spectrum of an optical active polymer solution placed between two crossed polarizers. The approach allows the evaluation of the optical rotatory dispersion of poly(propylene oxide) in benzene. The specific rotation, circular birefringence, and dispersion parameter depend on the wavelengths of the maxima and minima from the channeled spectrum.  相似文献   

13.
The self-diffusion of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers dissolved in deuterated water was investigated by means of pulsed field gradient NMR (PFG-NMR). The polymer forms micelles in the solution and, with increasing temperature, clouding and phase demixing occurs. The self-diffusion coefficient indicates the association of the polymer molecules in the vicinity of the cloud point because of its maximum with increasing temperature. Above the cloud point, two kinds of diffusing species are observed due to phase separation. The faster diffusing species is attributed to the polymer-poor phase. The self-diffusion coefficient of the polymer-rich phase species decreases with increasing temperature above the cloud point due to further association and dehydration. The correlation length of the diffusing associates, calculated from the self-diffusion coefficient and the viscosity by means of the Stokes-Einstein equation is nearly independent of temperature and concentration up to 30 wt-% polymer concentration. The correlation length is about 1.4 nm. It shows a slight maximum at the cloud point.  相似文献   

14.
A novel SalenCoIII (2,4‐dinitrophenoxy) (Salen = N,N'‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediamino) and 1,10‐phenanthroline monohydrate catalyst system was designed and employed for the copolymerization of CO2 and propylene oxide (PO). The perfectly alternating copolymerization of CO2 and PO proceeds effectively under middle temperature and pressure to yield poly(propylene carbonate) with a high yield and a high number average molecular weight of polymer. The structure of polymer was characterized by the IR and NMR measurements. The perfectly alternating copolymer was confirmed. The MALDI‐TOF spectrum insinuates that the copolymerization of CO2 and PO was initiated by H2O. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
张会良 《高分子科学》2015,33(3):444-455
Poly(propylene carbonate)(PPC) was melt blended in a batch mixer with poly(butylene carbonate)(PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibility. DMA results showed that the PPC/PBC blends were an immiscible two-phase system. With the increase in PBC content, the PPC/PBC blends showed decreased tensile strength, however, the elongation at break was increased to 230% for the 50/50 PPC/PBC blend. From the tensile strength experiments, the Pukanszky model gave credit to the modest interfacial adhesion between PPC and PBC, although PPC/PBC was immscible. The impact strength increased significantly which indicated the toughening effects of the PBC on PPC. SEM examination showed that cavitation and shear yielding were the major toughening mechanisms in the blends subjected the impact tests. TGA measurements showed that the thermal stability of PPC decreased with the incorporation of PBC. Rheological investigation demonstrated that the addition of PBC reduced the value of storage modulus, loss modulus and complex viscosity of the PPC/PBC blends to some extent. Moreover, the addition of PBC was found to increase the processability of PPC in extrusion. The introduction of PBC provided an efficient and novel toughened method to extend the application area of PPC.  相似文献   

16.
To assess the compatibility of blends of synthetic poly(propylene carbonate) (PPC), with a natural bacterial poly(3-hydroxybutyrate) (PHB), a simple casting procedure of blend was used. poly(3-hydroxybutyrate)/poly(propylene carbonate) blends are found to be incompatible according to DSC and DMA analysis. In order to improve the compatibility and mechanical properties of PHB/PPC blends, poly(vinyl acetate) (PVAc) was added as a compatibilizer. The effects of PVAc on the thermal behavior, morphology, and mechanical properties of 70PHB/30PPC blend were investigated. The results show that the melting point and the crystallization temperature of PHB in blends decrease with the increase of PVAc content in blends, the loss factor changes from two separate peaks of 70PHB/30PPC blend to one peak of 70PHB/30PPC/12PVAc blend. It is also found that adding PVAc into 70PHB/30PPC blend can decrease the size of dispersed phase from morphology analysis. The result of tensile properties shows that PVAc can increase the tensile strength and Young’s modulus of 70PHB/30PPC blend, and both the elongation at break and the tensile toughness increase significantly with PVAc added into 70PHB/30PPC.  相似文献   

17.
Ring opening polymerization of propylene oxide in the presence of a new type of catalytic system composed of chitosan-supported rare earth complex, triisobutyl aluminium, and acetylacetone and its kinetics have been studied for the first time. It has been found that the characteristics of this catalytic system are of high catalytic activity, of higher stereoselectivity, and of a high molecular weight polymer of 2 × 106. Kinetic studies show that the polymerization rate is first order with respect to monomer concentration and catalyst concentration, respectively. The apparent activation energy of the polymerization reaction is 37.1 kJ/mol. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2177–2182, 1997  相似文献   

18.
The UV-light degradation of polyethylene oxide (PEO) in aqueous solution was investigated operating under long wavelengths (λ > 300 nm) at 20 °C in different pH conditions varying from 2.3 to 12.0 and at two different concentrations. Thermo-oxidation experiments on PEO aqueous solution at 50 °C are also reported and compared to photo-oxidation results. The formation of oxidation products was followed by infrared analysis of deposits obtained by evaporation of aliquots of irradiated polymer solution. Photo-oxidation led to formates and esters but a third product was also identified, formic acid ions formed by partial hydrolysis of formates. The degradation of PEO in water led to the acidification of the aquatic medium. Size exclusion chromatography (SEC) was used to monitor the changes in molar weight and intrinsic viscosity with irradiation time. It was shown that the photo-oxidation produced a dramatic decrease of the average molar weights which is more important in acidic medium. Total organic carbon (TOC) measurements of the aged aqueous solutions showed that the mineralization of PEO could not be achieved in these photo-oxidative conditions.  相似文献   

19.
选用辛酸亚锡[Sn(Oct)2]和钛酸四丁酯(TBT)作为聚乳酸(PLA)/聚碳酸亚丙酯(PPC)的酯交换反应催化剂, 研究了溶液条件下单一催化剂及复合催化剂对PLA/PPC酯交换反应的催化作用. 通过对反应产物的分子结构、 热力学及流变学行为进行分析, 结果发现, 无论在单一催化剂还是复合催化剂作用下, PLA与PPC分子间均发生了酯交换反应, 同时伴随着断链反应. 其中, 当Sn(Oct)2作为单一催化剂或Sn(Oct)2/TBT作为复合催化剂时, 样品更倾向发生断链反应而非显著的酯交换反应. 进一步分析纯样品在催化剂Sn(Oct)2或TBT作用下的反应情况, 结果发现, PPC在反应最初阶段以高分子量的分子链断链为主, 且会发生明显的解拉链降解, 从而导致PLA/PPC在等质量比时酯交换反应程度不高, 这为今后更好地研究PLA/PPC酯交换反应提供了思路.  相似文献   

20.
Copolymerization of racemic propylene oxide with carbon dioxide is investigated in the presence of economically inexpensive and effective achiral salophenCo(III)X [salophen = N,N'-bis(3,5-di-tert-butylsalicylidene)-phenylenediimine, X = pentaflorobenzoate] catalyst and tetrabutyl ammonium bromide as co-catalyst. Effects of different variables like monomer to catalyst ratio, catalyst/co-catalyst ratio, temperature, pressure of CO2 on molecular weight, yield and selectivity of poly(propylene carbonate) [PPC] have been investigated. The maximum Mw of 25.8 g/mol has been obtained at 15 bar and 50°C. All the samples were found to have excellent polydispersity near to 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号