首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

2.
Passively Q-switched c-cut Nd:Gd0.63Y0.37VO4 laser performance at 1.06 μm was demonstrated with Cr4+:YAG as saturable absorbers for the first time to our knowledge. This c-cut mixed crystal was found to have large energy storage capacity. The shortest pulse width, largest pulse energy, and highest peak power were obtained to be 6.6 ns, 201.7 μJ, and 30.6 kW, respectively.  相似文献   

3.
We report, for the first time, an efficient intra-cavity second-harmonic generation (SHG) at 1084 nm in a nonlinear optical crystal, BiB3O6(BIBO) at the direction of (θ?) = (170.1°, 90°), performed with a LD end-pumped cw Nd:YVO4 laser. With 590 mW diode pump power, a continuous-wave (cw) SHG output power of 19 mW at 542 nm yellow-green color has been obtained using a 1.5 mm-thick BIBO crystal. The optical conversion efficiency was 3.22%. It was found that the output wavelength could be 532 nm, 537 nm or 542 nm according to regulating the angle of BIBO.  相似文献   

4.
Nanocrystalline (Nd,Dy)16(Fe,Co)76−xTixB8 magnets were prepared by mechanical alloying and respective heat treatment at 973–1073 K/30–60 min. An addition of 0.5 at % of Ti results in an increase of coercivity from 796 to 1115 kA m−1. Partial substitution of Nd by Dy results in an additional increase of coercivity up to 1234 kA m−1. Mössbauer investigations shows that for x?1 the (Nd,Dy)16(Fe,Co)76−xTixB8 powders are single phase. For higher Ti contents (x>1) the mechanically alloyed powders heat treated at 973 K are no more single phase, and the coercivity decreases due to the presence of an amorphous phase. A heat treatment at a higher temperature (1073 K) for longer time (1 h) results in the full recrystallisation of powders. The mean hyperfine field of the Nd2Fe14B phase decreases for titanium contents of 0?x?1, and remains constant for x>1. This indicates that the Ti content in the Nd2Fe14B phase reaches its maximum value.  相似文献   

5.
We report a compact, conduction-cooled, highly efficient, continuous wave (CW) Nd:YAG slab laser in diode-side-pumped geometry. To achieve high efficiency, a novel laser head for Nd:YAG slab has been developed. For an absorbed pump power of 27.6 W, maximum output power of 10.4 W in multimode and 8.2 W in near-diffraction-limited beam quality has been obtained. Slope and optical-to-optical conversion efficiencies are 45.3% and 37.7% in multimode with beam quality factors (M2) in x and y directions equal to 32 and 8, respectively. TEM00 mode operation was achieved in a hybrid resonator with slope and optical-to-optical conversion efficiencies of 43.2% and 29.7%, respectively. Beam quality factors in x and y directions are ?1.5 and ?1.6 for the whole output power range. The laser radiation was linearly polarized and polarization contrast ratios are >1200:1 in the multimode and 1800:1 in the TEM00 mode operation. In passive Q-switching with Cr4+:YAG crystal of 68% initial transmission, 18 ns pulsewidth has been achieved with an average power of 2 W at a repetition rate of 16 kHz.  相似文献   

6.
A comparative study of Nd:GdVO4 and Nd:YVO4 crystal lasers pumped by a fiber-coupled diode array has been conducted at the 4F3/2-4I9/2 transitions wavelengths of 912 nm and 914 nm, as well as when intracavity frequency-doubled to 456 nm and 457 nm, respectively. At the fundamental wavelength of 912 nm and second harmonic wavelength of 456 nm, maximum output powers from the Nd:GdVO4 crystal laser were 7.85 W and 4.6 W at a pump power of 29 W. All the results obtained from Nd:GdVO4 were superior to those of Nd:YVO4, indicating that Nd:GdVO4 is a more efficient laser crystal than Nd:YVO4 for laser operation on the 4F3/2-4I9/2 transitions.  相似文献   

7.
Magnetization and specific heat of Nd0.7Pb0.3MnO3 single crystal are studied at applied magnetic field. Magnetization measurement at 0.3 T shows ferromagnetic phase below 150 K (TC) and below 20 K displays an antiferromagnetic component. The latter appears to be destroyed at 4.8 T. This anomalous increase below 50 K is probably due to reorientation of Nd moments at high magnetic field. Heat capacity has been measured at 0-10 T at low temperature. The data have been fitted to contributions from free electrons (γ), ferromagnetic spin excitations (β3/2), lattice and a Schottky-like anomaly related to the rare-earth magnetism of the Nd ions. Fitting yields that β3/2 term is very small at 6 and 10 T because of introducing paramagnetic component in ferromagnetic phase at applied magnetic field. Peak due to Schottky anomaly is observed to be broadened with application of magnetic field and the magnitude of Schottky gap(ΔSch) also increases accordingly.  相似文献   

8.
Two-dimensional crystal curved lines consisting of the nonlinear optical SmxBi1−xBO3 phase are fabricated at the surface of 8Sm2O3·37Bi2O3·55B2O3 glass by continuous wave Nd:YAG laser (wavelength: 1064 nm) irradiation (samarium atom heat processing) with a power of ∼0.9 W and a laser scanning speed of 5 μm/s. The curved lines with bending angles of 0-90° or with sine-shapes are written by just changing the laser scanning direction. The polarized micro-Raman scattering spectra for the line after bending are the same as those for the line before bending, indicating that the crystal plane of SmxBi1−xBO3 crystals to the crystal growth direction might be maintained even after the change in the laser scanning direction. It is found from laser scanning microscope observations that the crystal lines at the surface are swelled out smoothly, giving a height of about 10 μm.  相似文献   

9.
Results of the thermoelectric power (TEP) measurements done on monocrystalline samples of RESn3 compounds (RE=La, Pr, Nd, and Gd) are presented for the temperature range of 5.5-300 K. It was found that the TEP is positive and weakly temperature dependent at temperatures T>100 K. For T<100 K pronounced anomalies have been observed for the PrSn3 and the NdSn3 compounds in the vicinity of 10 K.We argue that the Kondo and crystal field effects cause these anomalies. A shape of the TEP anomaly found for PrSn3 resembles very much that observed in the electrical resistivity.  相似文献   

10.
The Nd(Ba1−xNdx)2Cu3O7+δ solid solution, Nd123ss, has been investigated by neutron powder diffraction and Rietveld analysis. It is confirmed that the crystal structure of its Nd-rich limit, Nd(Ba0.55Nd0.45)2Cu3O7.33, is satisfactorily described in the space group Bmmm (a=7.7679(3), b=3.8542(1), and c=22.9590(9) Å). The fourfold superstructure with respect to the orthorhombic cell of YBCO is due to ordering between Ba and Nd atoms in the bridging layer. Differences with previous works concern exclusively the distribution of O atoms in the ‘chain’ layer. Our results give strong indications that ordering also occurs for lower Nd contents.  相似文献   

11.
The Ruddlesden–Popper (RP) phase compounds (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu, Sm, Nd and La) were prepared, and their transport and thermoelectric properties were investigated. The results indicate that high-T electrical resistivity ρ (300 K<T<1000 K) increases monotonically with temperature and basically has a relation ρTM, with M varying from 0.91 to 1.92 at temperatures T>~650 K, suggesting acoustic phonon scattering is dominant. At low temperatures (5 K<T<300 K), ρ for (Sr0.95R0.05)3Ti2O7 (R=Nd and La) decreases monotonously with decreasing temperature, whereas ρ for (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu and Sm) decreases first, and then increases instead as T decreases to a critical temperature Tc. Moreover, electrical conductivity σT1/2 holds at lower temperatures, indicating that the electron–electron interaction caused by the presence of disorder dominates the transport process at the low temperatures. Besides, experiments show that at T<~400 K the lattice thermal conductivity of the doped compounds basically decreases with increase of the atomic mass of dopants. Generally, the figure of merit (ZT) at 1000 K increases first, and then decreases with the increase of the dopants' ionic radius, and the largest ZT is achieved in (Sr0.95Gd0.05)3Ti2O7 mainly owing to its lower lattice thermal conductivity.  相似文献   

12.
We have demonstrated an efficient diode-pumped passively Q-switched Nd:GdVO4 laser working at 1342 nm by using an uncoated V3+:YAG crystal as the saturable absorber, in which both a-cut and c-cut Nd:GdVO4 crystals are employed. At the maximum absorbed pump power of 9.45 W, the maximum average output power can reach 519 mW and 441 mW corresponding to the output coupler with different transmission of 3% and 10% by using an a-cut Nd:GdVO4 crystal at 1342 nm, while the shortest pulse duration could be as low as 21.7 ns and 22.3 ns with the repetition rate of 48.41 kHz and 53.25 kHz by using a c-cut Nd:GdVO4 crystal, corresponding to the output coupler with different transmission of 3% and 10% at 1342 nm, and the single Q-switched pulse energy are 6.67 uJ and 7.06 uJ, the pulse peak power are 307 W and 316 W, respectively. The experimental results show that c-cut Nd:GdVO4 laser can generate shorter pulse with higher peak power in comparison with a-cut one.  相似文献   

13.
We report a laser architecture to obtain continuous-wave (cw) blue radiation at 462 nm. A 808 nm diode-pumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:CNGG crystal emitting at 935 nm. Intracavity sum-frequency mixing at 914 and 935 nm was then realized in a LiB3O5 (LBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 892 mW at 462 nm with a pump laser diode emitting 18.4 W at 808 nm.  相似文献   

14.
The shifts of the magnetic and charge ordering transition temperatures caused by Nd substitution for Y in Nd2/3Ca1/3MnO3 CMR narrow-band perovskite manganite have been studied. At low temperatures, three different long-range magnetic orderings consistent with a phase separation scenario have been observed in the doped compound (Nd0.9Y0.1)2/3Ca1/3MnO3 by neutron-diffraction study: the antiferromagnetic orderings of PCE and DE types existing below ∼110 and ∼60 K, respectively, and the ferromagnetic one of B type existing below ∼42. Magnetic phase transformations temperatures as well as those of charge ordering have been found to be structural-dependent. Y-doping leads to the decrease of the anisotropy of the orthorhombic Pnma crystal lattice b/√2c, which causes a decrease of the indirect exchange parameters in the system and thus a decrease in the magnetic transformation temperatures for 20-30 K in the doped compound. Doping leads as well to the higher level of the coherent Jahn-Teller distortions of the MnO6 octahedra in the 200-300 K temperature region, which results in the increase of the charge ordering temperature for ∼80 K.  相似文献   

15.
A new series Nd:Lu3ScxGa5 − xO12 (x = 0.5, 0.8, 1, 1.2 and 1.5) laser crystals have been successfully grown by the optical floating zone method. Their absorption and luminescence spectra were measured at room temperature and spectral parameters were systemically calculated using Judd-Ofelt (JO) theory. The fluorescence τf lifetimes were experimentally measured and compared with the theoretical results. Diode-pumped continuous-wave (CW) laser performance at 1.06 μm with mixed crystals was demonstrated. The influence of different x values on laser performance and spectral parameters was also discussed. All the results show that Nd:Lu3ScxGa5 − xO12 series crystals should be suitable for laser application.  相似文献   

16.
Pr(Fe0.4Co0.6)1.93 ribbons were prepared by a melt-spinning method. Their structure and magnetic properties are investigated as functions of wheel speed and annealing temperature. The as-spun ribbon consists of a Pr(Fe, Co)2 cubic Laves phase and an amorphous phase at a wheel speed of v≥35 m/s, while the non-cubic phases of PuNi3-type and rare earth appear when the speed lower than 30 m/s. A single Pr(Fe, Co)2 phase with MgCu2-type structure has been synthesized by the process for the wheel speed of v≥35 m/s and subsequent annealing at 500 °C for 30 min. The epoxy/Pr(Fe0.4Co0.6)1.93 composite has been produced by a cold isostatic pressing technique, and the magnetic properties have been investigated. The composite rod sample possesses good magnetostrictive properties, i.e., a large magnetostriction (λa=λλ) of 710 ppm at 800 kA/m and a dynamic coefficient d33 of 0.67 nm/A at 100 kA/m, and is of practical value.  相似文献   

17.
A compact high power diode-side-pumped Nd:GdVO4 laser has been presented, which can generate an output power of 52 W at 1.063-μm for continuous-wave (CW) operation. The absorption characteristics of the Nd:GdVO4 in different pump directions is measured, which were used to optimize the diode-side-pumped Nd:GdVO4 laser head. The laser characteristics of both CW and Q-switched Nd:GdVO4 and Nd:YAG in are compared and it was found that Nd:GdVO4 may surpass Nd:YAG for high power laser application.  相似文献   

18.
EPR spectroscopic investigations on single crystals of diaquabis[malonato(1-)-κ2O,O′] zinc(II) doped with VO(II) ion have been carried out at X-band frequencies and at 300 K. The single crystal, rotated along the three mutually orthogonally axes, has yielded spin-Hamiltonian parameters g and A as: gxx=1.980, gyy=1.972, gzz=1.937 and Axx=8.4, Ayy=6.1, Azz=18.1 mT, respectively. These spin-Hamiltonian parameters reflect a slight deviation from axial symmetry to rhombic, which is elucidated by the interstitial occupation of vanadyl ions. The isofrequency plots and powder EPR spectrum have been simulated. The percentage of metal-oxygen bond has been estimated. The optical absorption spectrum exhibits four bands at 257, 592, 720 and 764 nm suggesting a C4v symmetry. The admixture coefficients and bonding parameters have also been calculated by collaborating EPR data with optical data.  相似文献   

19.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

20.
XRD and residual surface stress (sin2 ψ) measurements were carried out on YBa2Cu3Ox superconductors with varying oxygen stoichiometry (6.3 < x < 7.0). Slopes of the surface strain versus sin2 ψ were plotted against oxygen content for certain reflections. Compressional surface stress has been found along the c-axis, while a tensile surface stress has been observed along the ab-plane. Both surface stresses were found to vary slightly with oxygen content. These findings qualitatively agree with a very small hydrostatic pressure effect on Tc for fully oxygenated YBa2Cu3Ox (x = 7) compared to oxygen deficient material at the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号