首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用改进的化学氧化还原法(Hummers法)氧化鳞片石墨, 再超声振荡剥离得到氧化石墨烯(GO)水溶液. 通过聚二烯丙基二甲基氯化铵(PDDA)分子对GO表面功能化, 由于带正电荷的PDDA分子功能化的GO与带负电荷的2-离子间的静电作用, 使Pt离子组装到GO表面, 再通过原位还原被束缚的Pt离子, 同时GO被还原成石墨烯片(GNs), 得Pt/PDDA-GNs催化剂. 相对空白GNs负载的Pt纳米粒子和商业化Pt/C(JM), Pt/PDDA-GNs催化剂有较高的氧还原活性和稳定性. 前者可归因于Pt颗粒尺寸细小和分散度较高, 后者是由于PDDA分子与Pt原子间的电子作用及对Pt颗粒的钉扎作用, 从而减缓了Pt的氧化和迁移.  相似文献   

2.
质子交换膜燃料电池是一种能够将燃料的化学能直接高效地和环境友好地转化为电能的绿色能源技术。质子交换膜燃料电池具有能量转化效率高、启动快速、零排放或者低排放等优点,被认为是后石油时代最为重要的能源替代技术之一。然而目前使用的电催化剂存在铂用量高和稳定性不足等问题。开发高性能低Pt催化剂对于降低质子交换膜燃料电池成本、促进质子交换膜燃料电池的大规模商业化应用具有十分重要的意义。Pt基金属间化合物是一类具有严格元素化学计量比和规整原子排列结构的合金化合物,其氧还原反应催化活性明显优于相应的Pt基无序合金及纯Pt催化剂,被认为是最具应用前景的低Pt催化剂之一。本文着重从催化机理、制备技术、组成调控、颗粒度调控、形貌调控和晶体结构等几个方面介绍了Pt基金属间化合物催化剂近来的研究进展,以及这类催化剂在质子交换膜燃料电池阴极氧还原反应中的应用研究情况,指出了这类催化剂目前尚存在的不足及挑战,并展望了未来的研究发展思路及方向。  相似文献   

3.
通过循环伏安法电沉积使直径约为7 nm的Pt纳米粒子均匀地分散于多孔硅表面, 拟用作微型质子交换膜燃料电池的催化电极. 与刷涂法相比较, 电沉积Pt纳米粒子的多孔硅电极(Pt/Si)呈现出高的Pt利用率和增强的电催化活性. 当Pt载量为0.38 mg•cm−2时, 其电化学活性比表面积高达148 cm2•mg−1, 是刷涂相近质量的纳米Pt/C催化剂的多孔硅电极Pt-C/Si的2倍多;该修饰电极对甲醇氧化也呈现了增强的催化性能和好的稳定性, 在0.5 V(vs SCE)极化1 h后电流密度为4.52 mA•cm−2, 而刷涂了相近Pt量的Pt-C/Si电极的电流密度只有0.36 mA•cm−2.  相似文献   

4.
采用阳极氧化铝(AAO)模板法电化学沉积制备了Pt纳米线阵列(Pt NWs)氧还原催化剂, 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学测试对Pt纳米线阵列催化剂的形貌和电催化性能进行了表征. 循环伏安法(CV)研究表明Pt纳米线阵列催化剂的电化学活性面积大于其几何面积; 旋转圆盘电极(RDE)测试研究发现, 制备的Pt纳米线阵列催化剂的氧还原反应(ORR)曲线的半波电势相对Pt/C的有正移, 并且Pt纳米线阵列催化剂的极限扩散电流比Pt/C大.  相似文献   

5.
董以宁  李赫  宫雪  韩策  宋平  徐维林 《应用化学》2023,(8):1077-1093
对绿色、高效能源储存装置日趋强烈的需求,使得用于清洁能源转换的先进技术获得了研究者的密切关注。具有环境友好、高能量转换效率等优势的燃料电池是传统能源转换装置极具希望的替代品。然而,工业催化界中商业化程度高的Pt体系催化剂存在成本高、稳定性差和抗毒化能力弱等问题,限制了燃料电池的进一步发展。开发储量丰富、成本低廉且性能优异的非Pt体系氧还原(ORR)催化剂是降低燃料电池成本,促进其大规模应用的有效途径。对此,结合近10年来国内外研究成果,系统介绍了当前各类非Pt体系ORR催化剂的研究进展,包括非贵金属基以及非金属基催化剂。同时,针对各类催化剂的优点、不足及改性策略进行了归纳与总结,并对未来ORR电催化剂的发展提出挑战、做出展望。  相似文献   

6.
碳载Pt-P催化剂对氧还原的电催化性能   总被引:1,自引:0,他引:1  
用NaH2PO2液相还原方法制得碳载Pt-P(Pt-P/C)催化剂(m(Pt)∶m(P)=5∶1)。 X射线衍射谱测量表明,Pt-P/C催化剂的Pt衍射峰的2θ值稍大于Pt/C催化剂的相应值,表明P进入了Pt晶格,形成了Pt-P合金。 电化学测试表明,Pt-P/C催化剂对氧还原的电催化性能要比商品化的E-TEK Pt/C催化剂好,其还原电位正移了40 mV。 由于Pt-P/C催化剂中Pt-P粒子的平均粒径和相对结晶度与Pt/C催化剂相似,推测Pt-P/C催化剂对氧还原的电催化性能好于Pt/C催化剂的原因可能为P的作用。  相似文献   

7.
用NaH2PO2液相还原方法制得碳载Pt-P(Pt-P/C)催化剂(m(Pt)∶m(P)=5∶1)。 X射线衍射谱测量表明,Pt-P/C催化剂的Pt衍射峰的2θ值稍大于Pt/C催化剂的相应值,表明P进入了Pt晶格,形成了Pt-P合金。 电化学测试表明,Pt-P/C催化剂对氧还原的电催化性能要比商品化的E-TEK Pt/C催化剂好,其还原电位正移了40 mV。 由于Pt-P/C催化剂中Pt-P粒子的平均粒径和相对结晶度与Pt/C催化剂相似,推测Pt-P/C催化剂对氧还原的电催化性能好于Pt/C催化剂的原因可能为P的作用。  相似文献   

8.
采用脉冲微波辅助化学还原法制备了钴-聚吡咯-碳(Co-PPy-C)载Pt 催化剂(Pt/Co-PPy-C),其中Pt 的总质量占20%. 利用透射电镜(TEM)、光电子射线能谱分析(XPS)和X射线衍射(XRD)研究了催化剂的结构,用循环伏安(CV)、线性扫描伏安(LSV)等方法考察了其电化学活性及氧还原反应(ORR)动力学特性及耐久性. Pt/Co-PPy-C电催化剂的金属颗粒直径约1.8 nm,略小于商用催化剂Pt/C(JM)颗粒尺寸(约2.5 nm);催化剂在载体上分散均匀,粒径分布范围较窄. Pt/Co-PPy-C的电化学活性比表面积(ECSA)(75.1 m2·g-1)高于商用催化剂的ECSA(51.3 m2·g-1). XPS测试表明,自制催化剂表面的Pt 主要以零价形式存在. 而XRD结果显示,自制催化剂中Pt(111)峰最强,Pt 主要为面心立方晶格. Pt/Co-PPy-C具有与Pt/C(JM)相同的半波电位;在0.9 V下,Pt/Co-PPy-C的比活性(1.21 mA·cm-2)高于商用催化剂的比活性(1.04 mA·cm-2),表现出更好的ORR催化活性.动力学性能测试表明催化剂的ORR反应以四电子路线进行. CV测试1000 圈后,Pt/Co-PPy-C和Pt/C(JM)的ECSA 分别衰减了13.0%和24.0%,可见自制催化剂的耐久性高于商用Pt/C(JM),在质子交换膜燃料电池(PEMFC)领域有一定的应用前景.  相似文献   

9.
采用脉冲微波辅助化学还原法制备了钴-聚吡咯-碳(Co-PPy-C)载Pt催化剂(Pt/Co-PPy-C),其中Pt的总质量占20%.利用透射电镜(TEM)、光电子射线能谱分析(XPS)和X射线衍射(XRD)研究了催化剂的结构,用循环伏安(CV)、线性扫描伏安(LSV)等方法考察了其电化学活性及氧还原反应(ORR)动力学特性及耐久性.Pt/Co-PPy-C电催化剂的金属颗粒直径约1.8 nm,略小于商用催化剂Pt/C(JM)颗粒尺寸(约2.5 nm);催化剂在载体上分散均匀,粒径分布范围较窄.Pt/Co-PPy-C的电化学活性比表面积(ECSA)(75.1 m2·g-1)高于商用催化剂的ECSA(51.3 m2·g-1).XPS测试表明,自制催化剂表面的Pt主要以零价形式存在.而XRD结果显示,自制催化剂中Pt(111)峰最强,Pt主要为面心立方晶格.Pt/Co-PPy-C具有与Pt/C(JM)相同的半波电位;在0.9 V下,Pt/Co-PPy-C的比活性(1.21 mA·cm-2)高于商用催化剂的比活性(1.04 mA·cm-2),表现出更好的ORR催化活性.动力学性能测试表明催化剂的ORR反应以四电子路线进行.CV测试1000圈后,Pt/Co-PPy-C和Pt/C(JM)的ECSA分别衰减了13.0%和24.0%,可见自制催化剂的耐久性高于商用Pt/C(JM),在质子交换膜燃料电池(PEMFC)领域有一定的应用前景.  相似文献   

10.
使用硼氢化钠共还原法制备40% (w)铂/石墨烯电催化剂用于氧还原反应. 通过循环伏安测试发现, 这种方法制备所得铂/石墨烯催化剂对氧还原反应活性较铂/碳催化剂差, 但稳定性有所提高. 在稳定性测试中,铂/石墨烯电催化性能衰减为50%, 较铂/碳(79%)好. X射线衍射(XRD)和透射电子显微镜(TEM)表征发现在铂/石墨烯催化剂中两者存在明显交互作用, 这可能是阻止石墨烯再堆垛和防止铂颗粒团聚的主要原因. 通过对单电池性能测试也发现铂/石墨烯催化剂更有利于电池长期稳定.  相似文献   

11.
分别以三聚氰胺和三聚氰胺的聚合物为配体, 采用浸渍法合成了两种氧还原反应(ORR)催化剂Fe-N/C(1)和Fe-N/C(2). 通过X射线衍射光谱(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和电化学测试对催化剂的成分、形貌和电催化性能进行了表征. 结果表明, 以三聚氰胺聚合物为配体制备的Fe-N/C具有更高的ORR催化活性. 在高温热处理过程中, 催化剂表面能形成更多的石墨N活性点, 是其ORR性能提高的重要原因.  相似文献   

12.
王爱丽  孙瑜  梁志修  陈胜利 《化学学报》2009,67(22):2554-2558
以XC-72碳黑为载体, H2[PtCl6]为前驱体, 采用浸渍还原法并结合后续高温处理, 制备出不同尺寸Pt颗粒(3~8 nm)的Pt/C催化剂. 在基于质子交换膜燃料电池(PEMFC)单电池的电化学电解池中, 对实际PEMFC催化层中燃料电池反应的Pt催化剂尺寸效应进行了研究. 结果表明, 在PEMFC催化层环境中, Pt/C纳米催化剂对氢氧化和氧还原反应均有显著的粒度尺寸效应. 随着Pt粒度减小, 氢氧化和氧还原反应的表面积活性均降低.  相似文献   

13.
Pt基催化剂是质子交换膜燃料电池难以替代的催化剂,然而低储量高成本的Pt严重制约其商业化进程。如何在减少贵金属Pt用量的同时提高其电催化性能是该领域的核心问题之一。空心结构纳米催化剂活性面积大,催化活性高,稳定性好且显著减少贵金属的用量,其制备方法众多,其中电位置换法无需额外的去核、无需对模板表面进行功能化且易于控制,是制备空心结构纳米材料的主要方法。本文综述了近年来国内外利用电位置换反应制备空心Pt基纳米催化剂的最新进展,并对其发展和应用前景进行了展望。  相似文献   

14.
钯纳米粒子在电极表面的制备及其对氧的催化还原   总被引:3,自引:0,他引:3  
纳米微粒的体积效应使其成为表面纳米工程及功能化纳米结构材料制备的理想研究对象 [1~ 3] .纳米粒子具有独特的电子、催化及光学特性[4 ] ,近年来关于纳米粒子的制备及其在材料科学领域中的应用受到研究者的极大关注 .而贵金属纳米粒子由于其在催化领域中的广泛应用而成为最重要的研究对象之一[5,6 ] .电催化氧还原是一直为化学家瞩目的研究领域[7~ 9] .研究主要目的之一是寻找合适的氧电极反应催化剂 ,并使之能够应用于燃料电池中 .其中催化氧电极材料研究得最多的是贵金属 Pt[10 ,11] .贵金属 Pd对氧催化还原的研究工作很少 .我们首次…  相似文献   

15.
将双氰胺、蔗糖与酞菁铁(钴)的混合物通过简单热解法,制备出Co/C-N、Fe/C-N和Fe-Co/C-N纳米复合物。随后利用热还原法,将少量铂沉积于Co/C-N上得到片状碳负载的Co-Pt纳米颗粒Co-Pt/C-N。对样品进行了详细表征,并研究了其在全域pH范围内(酸性、中性与碱性溶液)中的氧还原反应(ORR)活性。结果表明,Co/C-N具有比Fe/C-N和Fe-Co/C-N更高的ORR起始电位和半波电位,并且在碱性和中性溶液中,Co/C-N表现出比Pt/C更强的ORR电活性;在酸性溶液中,铂负载量(质量分数)8.1%的Co-Pt/C-N表现出与Pt/C相近的ORR起始与半波电位。催化剂优异的电活性主要归因于片状碳形成的三维结构、金属纳米颗粒的均匀分布以及丰富的吡啶氮。  相似文献   

16.
在1,6-己二醇溶剂中,以Ru3(CO)12和Fe3(CO)12为原料,采用低温回流方法合成了Ru-Fe纳米粒子催化剂。利用扫描电镜(SEM)、X射线衍射仪(XRD)和电化学技术表征了催化剂的物理特征和电催化性能.催化剂粉末以六方结构的Rux簇为主相,呈现出高度均匀而聚集的纳米颗粒特征.在0.5mol/L H2SO4溶液中,Ru-Fe催化剂对氧还原反应(ORR)的电催化活性高于Rux,主要归因于d电子从Ru原子到Fe原子的转移过程.  相似文献   

17.
质子交换膜燃料电池(PEMFCs)由于高比功率密度、高能量转换效率、环境友好和低温下快速启动等优点受到广泛关注,被认为是替代传统内燃机成为汽车动力的最理想能源转换装置。目前PEMFCs仍需较高载量的贵金属Pt作为电催化剂以保持转换效率,因此,开发低Pt量高活性的电催化剂对PEMFCs技术的商业化进程至关重要。核壳结构催化剂被证明是一种能有效降低电极Pt用量的策略,其既能通过结构优势提高贵金属Pt的利用率,又能通过电子或几何效应改善催化剂的催化活性和稳定性。本文首先简介了PEMFCs阴极氧还原反应(ORR)电催化剂构效关系的理论研究;其次综述了几种典型核壳结构电催化剂应用于ORR的研究进展;最后对ORR低Pt电催化剂的下一步研究方向作了展望。  相似文献   

18.
采用脉冲微波辅助化学还原合成新型载体钴-聚吡咯-碳(Co-PPy-C)负载PtNi催化剂.利用透射电镜(TEM)和X射线衍射(XRD)研究了催化剂的结构和形貌,此外,利用循环伏安(CV)和线性扫描伏安(LSV)等方法测试了催化剂的电化学活性及耐久性. PtNi/Co-PPy-C催化剂的金属颗粒直径约为1.77 nm,催化剂在载体上分布均匀且粒径分布范围较窄. XRD结果显示, PtNi/Co-PPy-C中Pt(111)峰最强, Pt主要是面心立方晶格.CV结果显示,其电化学活性面积(ECSA)为72.5 m2·g-1,明显高于商用催化剂Pt/C(JM)的56.9 m2·g-1.为进一步考查催化剂耐久性,电化学加速5000圈耐久性测试后, PtNi/Co-PPy-C颗粒发生明显集聚, ECSA衰减率和0.9 V下比质量活性衰减率分别为38.2%和63.9%.此外,采用有效面积为50 cm2的单电池用于评价自制催化剂的性能,发现在70 ℃且背压为50 kPa时电池的性能最好,此时自制PtNi/Co-PPy-C催化剂制备膜电极(MEA)的最大功率密度达到523 mW·cm-2.可见自制催化剂的电化学性能高于商用Pt/C(JM),在质子交换膜燃料电池(PEMFC)领域有一定的应用前景.  相似文献   

19.
氧还原反应是质子交换膜燃料电池和金属-空气电池的重要反应,贵金属铂(Pt)与元素周期表中第一排的非贵过渡金属(M)形成铂合金催化剂(PtM)可以提高氧还原反应活性. 但是,有关活性的提高有多大程度上是来自合金元素的贡献却仍然存在争议. 为了研究合金元素对PtM催化活性的影响,本工作合成了颗粒形状与合金元素含量相似的铂锰(PtMn), 铂铁(PtFe), 铂钴(PtCo)和铂镍(PtNi)纳米立方块催化剂,并考察了不同铂合金催化剂在酸性介质中的氧还原反应活性. 选择制备立方块形状纳米颗粒催化剂进行比较,可以将颗粒表面结构对催化活性的影响降到最小. 结果表明,氧还原反应活性与铂d-带中心值曲线呈现火山形关系,其中PtCo纳米立方块催化剂的活性最高. 本文所得到的实验结果与基于d-带理论框架已知表面的密度泛函理论计算结果一致.  相似文献   

20.
RuxCoySez纳米簇合物对阴极氧还原反应的催化性能   总被引:1,自引:0,他引:1  
以Ru3(CO)12、Co4(CO)12和Se为原料,采用低温回流技术在1,6-己二醇中合成了RuxCoySez纳米簇合物.利用SEM和XRD测试表征了催化剂的微观形貌和相结构,催化剂粉末以六方结构的Rux簇为主相,同时形成无定形相,呈现高度均匀聚集的纳米颗粒.利用旋转圆盘电极研究了催化剂对氧还原反应电催化活性.在0.5molL-1H2SO4溶液中,RuxCoySez催化剂对氧还原的催化活性和电化学稳定性明显高于RuxSey,开路电位达到0.91V(vs.NHE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号