首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
柴油发动机是一种高效耐用的发动机,具有广阔的应用前景.但柴油车尾气中的炭烟颗粒吸附了许多有毒有害物质,也是城市PM2.5的主要来源之一,对人类生命安全造成极大威胁.因此,降低和消除柴油车尾气中的炭烟颗粒是柴油车尾气净化的重要任务.尾气后处理是炭烟颗粒进入大气环境前的最后一道程序,可有效控制柴油车尾气中炭烟颗粒排放.其中,催化净化催化剂是尾气后处理技术的核心.研究表明,炭烟颗粒催化燃烧是一个气-固-固三相深度氧化反应,因此开发新型催化剂体系,改善催化剂与炭烟颗粒的接触,提高催化剂的本征活性,对于研制高活性炭烟燃烧催化剂具有重要的实际意义. 对于三维有序大孔(3DOM)结构催化剂,大孔有利于炭烟颗粒进入催化剂内部并与活性位点接触,而有序的孔道结构可以促进炭烟颗粒在催化剂孔道内传输.因此,将催化炭烟颗粒燃烧催化剂设计成3DOM结构,可促进炭烟颗粒催化燃烧,提高催化剂活性.研究表明,锰铈复合氧化物材料在炭烟颗粒催化燃烧中表现出比单一的锰氧化物和铈氧化物更好的性能.而将K与Ce和Mn形成复合氧化物,利用三者之间的协同作用,将可使K掺杂3DOM结构Mn0.5Ce0.5Oδ催化剂具有更高的催化活性.本文利用胶体晶体模板法成功制备了3DOM结构的Mn0.5Ce0.5Oδ复合氧化物,并采用简单的等体积浸渍方法成功制备了不同K担载量的K掺杂3DOM结构Mn0.5Ce0.5Oδ催化剂(K-MCO).表征结果表明, K-MCO催化剂具有贯通有序的大孔结构,但焙烧温度和焙烧时间会对大孔结构的规整性有一定影响;催化剂中K含量、焙烧温度和焙烧时间对K-MCO的晶型影响较大,催化剂中出现了一个新的晶相K2Mn4O8.另外, K含量、焙烧温度和焙烧时间对催化剂的氧化还原性能也有较大影响.评价结果表明,所制催化剂对炭烟催化燃烧均具有较高活性,其中20% K-MCO-4h催化剂活性最高,催化燃烧炭烟的T50(炭烟的最大燃烧峰值)为331oC, CO2选择性为95.3%.催化剂的大孔结构效应以及K, Mn和Ce三者间的协同作用有利于提高催化剂催化燃烧炭烟的活性.另外,由于柴油车尾气排气口温度范围为175–400 oC,而本文所制催化剂催化燃烧炭烟的温度低于400 oC,因此该催化剂可以在柴油车尾气排气口温度范围内进行炭烟催化燃烧.由于具有合成步骤简单、活性高以及成本低等优点,该催化剂在实际应用方面具有广阔前景.  相似文献   

2.
 采用水油两相双引发剂的无皂乳液聚合法制备了羧基改性的聚甲基丙烯酸甲酯 (PMMA) 聚合物微球, 并以此为模板, 采用胶体晶体模板法制备了三维有序大孔 (3DOM) 钙钛矿 LaFeO3 催化剂. 同时采用柠檬酸络合燃烧法制备了纳米钙钛矿 LaFeO3 催化剂. 通过傅里叶红外光谱、扫描电镜、X 射线衍射和激光粒度仪等方法对样品进行了表征. 采用程序升温氧化反应评价了催化剂对模拟柴油机炭黑颗粒催化燃烧的活性. 结果表明, 制备的羧基改性 PMMA 聚合物微球固含量约为 10%, 表面羧基含量约为 3 mmol/g. 微球粒径分布均匀, 且可通过调节反应条件得到不同的粒径, 可控范围在 300~700 nm. 所制得的 3DOM 钙钛矿 LaFeO3 催化剂以六方有序的方式排列, 其孔径及孔径收缩率分别为 300 nm 和 32%, 大孔孔壁平均厚度约 50 nm. 该催化剂对炭黑颗粒催化燃烧的 T10, T50, T90 和 SmCO2 分别为 340, 412, 458 oC 和 99.8%, 性能优于纳米 LaFeO3 催化剂.  相似文献   

3.
与汽油发动机相比,柴油发动机具有热效率高、CO2排放低、寿命长、续航距离远和经济性好等优点,可大大缓解能源短缺,降低 CO2排放量.因此,机动车柴油化是当前发展趋势.然而,柴油发动机在使用过程中会排放大量炭烟颗粒物,对人体危害极大.因此,控制炭烟颗粒排放成为环境催化研究的重点之一.
  炭烟颗粒物催化燃烧反应是典型的固(炭烟颗粒)-固(催化剂)-气(O2)多相催化反应.三维有序大孔氧化物(3DOM)具有大孔径和内部贯通的孔道结构,能有效提高炭烟颗粒与催化活性中心的接触性能.同时,纳米 Au颗粒在大孔氧化物表面的负载可有效提高催化剂本征活性,但纳米 Au颗粒催化剂热稳定性较差. CeO2具有较好的储放氧性能,可与贵金属活性组分发生相互作用,从而提高贵金属纳米颗粒的分散度和稳定性.因此,本文从柴油炭烟颗粒物催化燃烧反应本质出发,设计制备了高炭烟燃烧催化活性的3DOM氧化物担载 Au基催化剂,研究了 Au与 CeO2强相互作用对炭烟燃烧活性的影响.
  采用胶体晶体模板法制备3DOM Al2O3载体,由微孔膜氨沉淀法制备 CeO2/3DOM Al2O3催化剂,以还原-沉积法制备 Au/3DOM Al2O3和 Au/CeO2/3DOM Al2O3催化剂,并利用扫描电镜、N2物理吸附-脱附、X射线衍射、透射电镜、紫外漫反射光谱、H2程序升温还原和 X射线光电子能谱等手段对催化剂形貌、比表面积、物理化学性质和氧化还原性进行了表征.结果表明,在 CeO2/3DOM Al2O3中, Al3+可进入到氧化铈晶格内,形成 Al-Ce-O固溶体,产生氧空位,这有利于氧物种转移.此外, Au/CeO2/3DOM Al2O3催化剂中 Au和 CeO2之间的强相互作用能增加 Au纳米颗粒表面活性氧物种数量,从而促进柴油炭烟燃烧反应.纳米颗粒 Au的担载使得催化柴油炭烟燃烧的起燃温度明显降低,其中 Au/CeO2/3DOM Al2O3催化剂表现出最高的催化活性,T10,T50和T90分别为273,364和412oC.  相似文献   

4.
与汽油车相比,柴油车具有CO2排放低、寿命长和经济性好等优点,所以近年来受到广泛关注并被大量使用.但是,柴油车在使用过程中会产生大量炭烟颗粒物(PM),对大气环境和人类健康造成很大威胁.因此,开展这方面的基础研究具有重要的科学意义及环境保护意义.催化柴油炭烟燃烧反应是一个气-固-固多相深度氧化反应,由于PM的粒径远大于传统催化剂,导致PM不能进入催化剂孔道内部,造成催化剂活性比表面积利用率较低.设计并制备大孔径的三维有序大孔结构(3DOM)的催化剂,能够减小反应扩散阻力,增加催化剂与炭烟颗粒物的有效接触,加快反应进行.另外,可以通过在3DOM氧化物表面担载其它活性组分,提高催化剂的氧化还原性能,进而提高其活性.CeO2有很好的储放氧性能,在柴油车尾气净化催化剂中较为常见,但是单一的CeO2热稳定性较差,高温下容易烧结,使得比表面积减小,并且失去储氧能力,造成催化剂失活.文献中较常见的解决办法是在CeO2中掺杂其它阳离子,如Zr4+,Pr3+,Al3+,La3+及Y3+等离子,以提高CeO2的抗高温烧结能力.此外,研究报道的催化剂对催化柴油炭烟颗粒物燃烧的峰值温度已经远低于炭烟颗粒物的自燃温度,但是对颗粒物的起燃温度仍普遍较高.我们前期研究结果表明,担载纳米Au颗粒催化剂能够显著降低炭烟燃烧的起燃温度.本文采用胶体晶体模板法制备了3DOM Al2O3载体,利用微孔膜-氨沉淀法担载不同量的活性组分CeO2,制备出一种负载型x-CeO2/3DOM Al2O3催化剂,它既可减少稀土元素用量,降低成本,又因为Al2O3的机械强度较高,还能保证催化剂的机械强度足够好.为了进一步降低催化剂催化炭烟燃烧的起燃温度,利用还原沉积法在多层载体x-CeO2/3DOM Al2O3上负载纳米Au催化剂,制备出不同厚度的CeO2纳米层负载Au催化剂(Au/x-CeO2/3DOM Al2O3).利用X射线衍射、扫描电镜、透射电镜、H2程序升温还原和O2程序升温脱附等方法研究了催化剂的结构及物化性质与催化剂活性之间的关系,提出了消除PM反应的可能机理.结果表明,Al3+离子能够部分进入到CeO2中,形成Al-Ce固溶体.由于Al离子半径小于Ce离子,Al3+掺杂后能引起CeO2晶格发生畸变,产生大量缺陷,形成大量氧空位,促进晶格氧的移动,从而使催化剂具有更大的储放氧能力.在Au/x-CeO2/3DOM Al2O3催化剂中,CeO2担载量过高时,氧化铈纳米层较厚,活性组分容易烧结,不利于催化剂活性提高;而CeO2担载量过低,则CeO2纳米层较稀薄,催化剂的氧化还原性能受限,催化剂活性也不高.因此,CeO2的担载量应适当.此外,Au和CeO2之间的强相互作用能够增加Au纳米颗粒表面活性氧物种的数量,从而促进柴油炭烟燃烧反应.活性测试结果表明,担载纳米Au颗粒后,催化剂催化柴油炭烟燃烧的起燃温度均明显降低,在所制备的系列催化剂中Au/20%CeO2/3DOM Al2O3催化剂展示了最高的催化活性,T10,T50和T90分别为267,372和426 oC.  相似文献   

5.
柴油车尾气排放的碳烟颗粒对人类的生存环境和身体健康带来了严重危害.催化燃烧是消除碳烟颗粒污染的有效途径.碳烟颗粒催化燃烧是固-固-气相反应,因此催化剂本身具有活泼的氧中心且其能与碳烟颗粒有效接触是提高反应效率的关键因素.为改善碳烟颗粒与催化剂的接触,设计制备三维有序大孔(3DOM)催化剂,使碳烟颗粒可以进入催化剂孔道内部,增加其与催化剂的有效接触,是提高反应活性的有效途径.此外,在催化剂晶格中掺杂其它金属离子形成固溶体结构,可提高其氧化还原性能,也可有效提高其碳烟燃烧活性.SnO2富含活泼的表面缺位氧和可还原的晶格氧,且其熔点高达1630 oC,具有良好的热稳定性,被广泛用于制备气体传感、电化学和催化等材料.在过去的6年中,本课题组在SnO2催化化学领域做了大量系统的工作,将SnO2基催化材料用于多种环保和能源反应.发现通过其它阳离子Fe3+,Cr3+,Ta5+,Ce4+和Nb5+等的掺杂,替换晶格中部分Sn4+形成金红石型SnO2固溶体结构,可显著提高催化剂氧物种的流动性、活性和本身的热稳定性.本文采用胶体晶体模板法制备出了Ce4+,Mn3+和Cu2+离子掺杂的SnO2三维有序大孔固溶体催化剂用于松散接触条件下的碳烟催化燃烧.采用SEM,TEM,XRD,STEM-mapping,O2-TPD和XPS等手段对催化剂进行表征,研究其碳烟催化燃烧性能.SEM和TEM结果表明已成功合成三维有序大孔结构样品.XRD,Raman和STEM-mapping结果表明,Ce4+,Mn3+和Cu2+离子均进入四方金红石型SnO2晶格形成固溶体结构.另外,Raman,H2-TPR,XPS和O2-TPD等结果发现上述离子掺杂三维大孔SnO2后,催化剂表面形成了更活泼、丰富的氧物种,有利于碳烟颗粒燃烧.其中3DOM-Cu1Sn9催化剂具有最丰富的活泼氧中心,因此表现出最高的活性.  相似文献   

6.
7.
何方  赵坤  黄振  李新爱  魏国强  李海滨 《催化学报》2013,34(6):1242-1249
采用无皂乳液聚合法制备了聚苯乙烯(PS)聚合物微球,并采用胶晶模板法制备了三维有序大孔3DOM LaFeO3钙钛矿型氧化物.通过扫描电镜、X射线衍射和傅里叶变换红外光谱等手段对氧化物的性能进行了表征.利用程序升温还原和多次氧化还原循环反应评价了氧化物的反应性,并在固定床反应器上研究了其甲烷氧化性能.结果表明,与离心法和蒸发法相比,垂直沉积法获得的PS微球模板排列更均匀有序;前驱物溶剂及浓度对最终的三维有序大孔材料的结构有显著影响,利用乙醇为前驱物溶剂所制备的样品比利用乙烯为溶剂的样品具有更好的三维有序大孔结构,前驱物乙醇溶液浓度在1.0 mol/L为宜.甲烷氧化实验表明,3DOM-LaFeO3钙钛矿型氧化物中存在两种氧物种:表面吸附氧和体相晶格氧.表面吸附氧主要在反应初期将甲烷完全氧化为CO2和水蒸汽,而体相晶格氧主要将甲烷部分氧化为H2和CO.在甲烷部分氧化反应中,三维有序大孔LaFeO3钙钛矿型氧化物比相同质量的纳米LaFeO3氧化物提供了更多的氧,并且可使甲烷在较宽的反应阶段生成H2和CO摩尔比为2:1的合成气,从而更有利于后续的费托合成等工艺.  相似文献   

8.
韦岳长  吴强强  熊靖  刘坚  赵震 《催化学报》2018,39(4):606-612
柴油机排放颗粒物(主要成分是炭烟)是城市大气PM2.5中一次颗粒物的主要来源和二次颗粒物形成的重要组分,严重危害大气环境和人类健康.利用颗粒物捕集器与催化剂相结合的连续过滤再生技术是满足柴油车国VI炭烟颗粒物排放标准的最有效技术,目前该技术所面临的挑战是研发在排气温度的柴油炭烟颗粒物催化氧化催化剂.柴油炭烟催化燃烧反应的本质是典型的气(氧气)-固(炭烟颗粒)-固(催化剂)三相深度氧化反应,因此我们研究组提出了高活性柴油炭烟燃烧催化剂设计应该遵循优化固-固接触与强化活化分子氧能力二者相结合的研究思路.为满足此设计思路的要求,本课题组前期采用孔径大于200 nm的三维有序大孔(3DOM)结构氧化物作为载体,利用大孔效应来实现PM在催化剂内部的有效扩散,从而提高催化剂与PM的接触效率.采用具有强活化分子氧能力的负载型贵金属(Au,Pt)纳米颗粒或贵金属-氧化物复合纳米颗粒作为活性位来提高催化剂对分子氧的活化能力,进而设计了多个系列高活性催化剂,并形成了担载贵金属纳米颗粒的可控制备方法与装置.然而,Au和Pt昂贵的价格限制了其广泛应用.价格相对便宜的Pd具有与Pt相似的催化性能,是其良好替代品.但是,目前关于3DOM氧化物表面负载型Pd纳米颗粒结构和尺寸与柴油炭烟催化燃烧性能之间的相关研究仍然较少.基于此,本文采用气泡辅助膜还原法制备了3DOM二氧化钛(TiO_2)担载超细Pd纳米颗粒催化剂.利用XRD,Raman,BET,SEM,TEM,ICP,XPS和H2-TPR等技术手段对催化剂进行表征,并以模拟柴油炭烟为研究对象,利用程序升温氧化反应(TPO)对催化剂的活性进行评价,深入探讨了催化剂的制备、结构及物化性质与炭烟催化燃烧反应性能之间的关系.XRD和Raman结果表明,TiO_2载体由锐钛矿(主)和金红石(次)两种物相组成.SEM照片显示,所制催化剂为规整的有序大孔结构,球形孔互相贯通,孔径均一,大孔腔平均尺寸为280 nm,孔窗尺寸为109 nm,这种三维有序大孔TiO_2的结构能够增强炭烟颗粒与催化剂之间的接触效率.TEM表征显示,平均粒径为1.1 nm的超细半球型Pd纳米颗粒高度分散于TiO_2载体的内壁上,两者间的优化界面面积有利于增加活化O2的活性位密度,这些活性位源于Pd与TiO_2间强相互作用.H2-TPR和XPS表征印证了上述观点,具有1.1 nm超细Pd颗粒的Pd/3DOM-TiO_2催化剂表现出强的低温氧化还原特性和丰富的表面吸附氧物种.在TPO测试中,相对于担载5.0 nm Pd颗粒的催化剂,具有1.1 nm尺寸超细Pd颗粒的Pd/3DOM-TiO_2催化剂展示了高的催化炭烟燃烧活性,T10,T50和T90分别为295,370和415 oC,且在5次TPO测试过程中表现出良好的催化和结构稳定性.这种具有3DOM结构和超细Pd纳米颗粒的纳米催化剂能够有效降低Pd的使用量,在催化炭烟燃烧的实际应用中大有潜力.  相似文献   

9.
 用K部分取代LaMnO3中的La得到La0.8K0.2MnO3, 再用Cu部分取代Mn得到La0.8K0.2CuxMn1-xO3, 采用程序升温反应方法对催化剂同时去除NOx和碳烟的性能进行评价,然后利用XPS从分子水平来解释部分取代对LaMnO3钙钛矿催化剂性能的影响. 结果表明,两种不同取代更有利于催化剂形成钙钛矿型晶体结构,为了保持分子的电中性, K部分取代使得Mn2+转变成Mn3+, 部分转变成Mn4+, 从而使催化剂的活性及选择性大幅度提高. Cu部分取代进一步使部分Mn3+转变成Mn4+, 催化剂的活性有所降低,但由于Cu2+和Mn3+的协同作用,催化剂的选择性得到进一步的提高. 对于同时催化去除NOx和碳烟反应,催化剂中起决定性作用的是表面的Mn3+和Cu2+.  相似文献   

10.
采用柠檬酸络合法制备了系列La1-xCaxMnO3+δ(x=0, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2)催化剂,采用低温N2物理吸附,氢程序升温还原(H2-TPR)、氧程序升温脱附(O2-TPD),X-射线衍射(XRD)和X-射线光电子能谱(XPS)研究了其物理化学性质,并考察了甲烷催化燃烧活性。结果表明,当Ca摩尔掺杂量为0.1时,催化活性最好。XRD和BET表征结果表明Ca可以进入钙钛矿结构中,Ca掺杂对催化剂的比表面积无显著影响。H2-TPR 和XPS表征结果表明Ca掺杂增加了Mn4+的含量。O2-TPD表征结果表明适量Ca掺杂可以降低晶格氧脱出温度。Mn4+具有较强氧化性,因此提高了催化活性,但随着Ca掺杂量增加,催化剂表面吸附氧含量有所减少,表明气相中氧难以迅速补充消耗的晶格氧,Ca掺杂量继续增加又会使催化活性有所下降。依据反应机理,Ca掺杂一方面可以促进Mn4+含量增加,有利于催化活性;另一方面会使催化剂表面吸附氧含量有所下降,降低了催化活性。  相似文献   

11.
采用溶剂热法制备了La_(1-x)Rb_xM n O_3(x=0、0.1、0.2、0.3)钙钛矿型复合金属氧化物催化剂,通过XRD、FT-IR、SEM、XPS和H_2-TPR等手段对催化剂进行表征,在微型固定床反应器上评价了其同时消除NO和碳烟的催化性能。结果表明,La_(1-x)Rb_xM n O_3催化剂具有单一的钙钛矿结构,样品中Mn物种以Mn~(3+)和Mn~(4+)的形式存在。与LaMn O_3催化剂相比,Rb~+部分取代La~(3+),催化剂体系中形成较多的高价Mn~(4+)和氧空位,其氧化还原性能提高,催化性能得到改善。随着Rb~+取代量的增加,NO转化率升高,碳烟燃烧温度降低。当x=0.3时,La_(0.7)Rb_(0.3)M n O_3催化剂上CO_2浓度峰值温度t_(max)为430℃,CO_2的选择性为99.0%;反应温度为429℃,NO转化率达到最大,为59.7%。  相似文献   

12.
以共沉淀法制备出了纳米晶粒钙钛矿型LaCoO3和La0.8Sr0.2CoO3催化剂,并考察了其对VOCs的催化燃烧性能,实验结果表明该类催化剂对单一VOC和混合VOCs均有很好的催化活性,而La0.8Sr0.2CoO3的催化活性要比LaCoO3的催化活性更好;在混合VOCs催化燃烧的试验中,三种有机物的易氧化性依次为正丙醇>甲苯>环己烷,达到99%的转化率时,环己烷的反应温度则比甲苯的反应温度要低约40℃,同时催化剂100h稳定性试验和表征结果表明,La1-xSrxCoO3(x=0、0.2)钙钛矿型催化剂有着很好的结构稳定性.  相似文献   

13.
采用甘氨酸-硝酸盐溶液燃烧法制备了钙钛矿型氧化物催化剂La0.8Sr0.2Fe1-xScxO3-δ (LSFS, x=0, 0.3,0.4, 0.5, 0.6, 0.8, 1), 利用X射线衍射(XRD)、H2程序升温还原(H2-TPR)、扫描电子显微镜(SEM)和比表面积测试等手段对催化剂进行了系统表征, 并在常压微型固定床反应器上考察了催化剂对甲烷燃烧的催化性能. 结果表明, 经空气气氛下900 °C煅烧5 h制备的LSFS均具有单一的钙钛矿结构, 在La0.8Sr0.2FeO3-δ (LSF)中掺杂Sc有助于改善催化剂的抗烧结性能, 提高催化剂的比表面积. 当LSF 中的Sc 掺杂量为0.4-0.6 时, 所形成的LSFS表现出良好的甲烷催化燃烧活性, 其中Sc 掺杂量为0.5 时, 其起燃温度(T10)和完全转化温度(T90)分别为406和563 °C, 与La0.8Sr0.2FeO3-δ和La0.8Sr0.2ScO3-δ相比, T10分别降低了14和87 °C; T90分别降低了59和95 °C.  相似文献   

14.
含稀土铕配合物三维有序大孔材料的制备及其荧光性能   总被引:2,自引:0,他引:2  
采用物理吸附的方法将稀土配合物嵌入三维有序大孔聚合物材料的孔内,组装了发光性能良好的含邻菲罗林-铕配合物的三维有序大孔聚合物材料(3DOM/Eu(Phen)2).并通过扫描电镜、红外光谱和荧光光谱对3DOM/Eu(Phen)2组装体进行了表征.结果表明:组装体的结构保持了三维有序大孔材料的结构特征,在紫外灯的照射下,发出稀土离子的特征谱线,与纯配合物相比,其激发光谱发生蓝移,荧光寿命延长.  相似文献   

15.
采用无皂乳液聚合法制备聚苯乙烯(PS)微球,通过自组装得到排列均匀有序的聚苯乙烯(PS)胶晶模板,然后经过浸渍和煅烧得到三维有序大孔(3DOM)钙钛矿型氧化物LaFe_(0.7)Co_(0.3)O_3。通过扫描电镜、透射电镜和X射线衍射等手段对制备的3DOM钙钛矿型氧化物LaFe_(0.7)Co_(0.3)O_3的物理化学性能进行表征。在固定床反应器上考察3DOM LaFe_(0.7)Co_(0.3)O_3的甲烷化学链水蒸气重整性能。结果表明,聚苯乙烯(PS)微球粒径受苯乙烯单体使用量的影响,随着苯乙烯单体使用量的增加聚苯乙烯(PS)微球粒径呈增大的趋势;煅烧温度对三维有序大孔结构有显著影响,浸渍后模板在500℃煅烧下即能形成三维有序大孔结构比表面积达到19.820 m2/g,随着煅烧温度的升高三维有序大孔结构遭到部分破坏,在900℃煅烧下三维有序大孔结构遭到完全破坏。在氧载体与甲烷的反应前期,气体产物中CO2含量较高,是表面吸附氧将甲烷完全氧化所致,在表面吸附氧消耗完后体相晶格氧将甲烷部分氧化生成H2与CO。在水蒸气氧化阶段,水蒸气与还原态的氧载体发生反应生成氢气,产氢率为4.0-5.0 mmol/g。同时水蒸气氧化阶段气相产物中CO和CO2含量很低,说明3DOM LaFe_(0.7)Co_(0.3)O_3具有优秀的抗积炭性能。  相似文献   

16.
17.
胶体晶体模板法制备三维有序大孔复合氧化物*   总被引:1,自引:0,他引:1  
张桂臻  赵震  陈胜利  董鹏 《化学进展》2009,21(5):948-956
胶体晶体模板法是制备三维有序大孔(3DOM)复合氧化物材料的有效方法。制备过程一般包括3个步骤:首先,将单分散微球堆积成三维有序排列的胶体晶体;其次,将液态前驱体填充到胶体晶体的间隙,并在原位转化为固体骨架;最后,将微球去除,在原来微球间的空隙位置得到固体骨架,原来微球占据的位置则成为相互连接的孔穴。其中,胶体晶体模板的组装、前驱体的填充以及模板的去除都是制备3DOM复合氧化物的关键影响因素。本文针对这几个控制因素对胶体晶体模板法制备3DOM复合氧化物的影响进行了概述,并对孔结构的表征以及材料在催化和电极材料等方面的应用作了简单介绍。  相似文献   

18.
以聚苯乙烯微球(polystyrene microsphere)高速离心组装的胶体晶体为模板,以Ce(NO3)3·6H2O与柠檬酸的螯合物填充模板,经热转化后合成了3DOM CeO2.TG-DTA分析表明加入柠檬酸可提高硝酸铈的热稳定性,规避其低熔点对形成3DOM结构的不利因素.通过SEM观察,制备的3DOM材料大孔六方有序,排列紧凑,孔径250 nm,收缩率约16%.大孔之间由小窗口连通,构成三维交联的孔道体系.XRD测试显示,材料由CeO2的立方晶粒组成,粒径11 nm.  相似文献   

19.
采用模板法, 用正硅酸乙酯和3-巯丙基-三甲氧基硅烷的混合溶胶, 在聚苯乙烯胶晶间隙中原位转化, 除去模板后用双氧水将巯基氧化成磺酸基, 首次成功地制备了大孔规整排列的3DOM SiO2-SO3H材料. 样品用SEM, EDS, FT-IR等方法进行了测试表征. 结果表明, 所得到材料的三维大孔结构规整性十分好, 大孔孔径大约250 nm, 并由大约80 nm的小孔相连; 磺酸基很好地嵌入孔壁基质中, 吡啶吸附测定显示了典型的质子酸特征, 而且酸中心随硫含量增加而增多. 对乙酸与正丁醇的酯化反应显示了良好的催化性能, 磺酸含量越大, 催化活性越高. 这一研究为开发新型高效的固体酸催化剂提供了很有意义的结果.  相似文献   

20.
以聚苯乙烯胶晶为模板,3-氨基-丙基-三乙氧基硅烷和正硅酸乙酯为前驱物,合成了三维有序大孔(3DOM)氨基功能化SiO2-NH2材料. SEM观察表明,合成的3DOM材料具有规则整齐的大孔通孔结构,平均孔径在535~596 nm之间,孔径收缩率为4.8%~14.5%. FTIR分析表明,材料中含有氨基等有机基团. BET分析表明,材料的比表面积为10.2 m2/g. 合成的3DOM SiO2-NH2材料对Cr(Ⅵ)离子的吸附能力随着材料中氨基含量的增加而增大,最大吸附量为4.31 mmol/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号