首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the quasi-normal modes frequency of near extremal Schwar-zschild-de Sitter black holes, we obtain area and entropy spectrum for the black hole horizon. By using Bohr-Sommerfeld quantization for an adiabatic invariant I = ∫dEω(E), where E is the energy of the system and ω(E) is the vibrational frequency, we arrive at an equally spaced mass spectrum. In the other terms, we extend directly the Kunstatter’s approach kun [6] to determine mass and entropy spectrum of near extremal Schwarzschild-de Sitter black holes which are asymptotically de Sitter rather than asymptotically flat. We show the mass and area spectrum is equally spaced only for a fixed l. For different l there are multiplets with different values of spacing.  相似文献   

2.
3.
In this paper, we discuss leading-order corrections to the entropy of Kerr black hole due to thermal fluctuations in the finite cavity. Then temperature is constant, the solution of the black hole is obtained within a cavity, that is, the solution of the spacetime after considering the radiation of the black hole. Therefore, we derive that the location of the black hole horizon and specific heat are the functions of temperature and the radius of the cavity.Corrections to entropy also are related to the radius of the cavity. Through calculation, we obtain conditions of taking the value of the cavity‘s radius. We provide a new way for studying the corrections of complicated spacetimes.  相似文献   

4.
In this paper, we discuss leading-order corrections to the entropy of Kerr black hole due to thermal fluctuations in the finite cavity. Then temperature is constant, the solution of the black hole is obtained within a cavity, that is, the solution of the spacetime after considering the radiation of the black hole. Therefore, we derive that the location of the black hole horizon and specific heat are the functions of temperature and the radius of the cavity. Corrections to entropy also are related to the radius of the cavity. Through calculation, we obtain conditions of taking the value of the cavity's radius. We provide a new way for studying the corrections of complicated spacetimes.  相似文献   

5.
The quantum entropies of gravitational, electromagnetic, neutrino and scalar fields in the static Schwarzschild-anti-de Sitter black hole with a global monopole are investigated by using the brick-wall model. The quantum entropy contain two parts: One is quadratically divergent term which takes a geometric character; the other is spin-dependent, logarithmically divergent terms. The whole expression of the entropy of a spin field does not take the form of the scalar field. PACS: 04.70. Dy, 97.60.Lf  相似文献   

6.
From a new perspective, we discuss the thermodynamic entropy of (n+2)-dimensional Reissner-Nordströmde Sitter (RNdS) black hole and analyze the phase transition of the effective thermodynamic system. Considering the correlations between the black hole event horizon and the cosmological horizon, we conjecture that the total entropy of the RNdS black hole should contain an extra term besides the sum of the entropies of the two horizons. In the lukewarm case, the effective temperature of the RNdS black hole is the same as that of the black hole horizon and the cosmological horizon. Under this condition, we obtain the extra contribution to the total entropy. With the corrected entropy, we derive other effective thermodynamic quantities and analyze the phase transition of the RNdS black hole in analogy to the usual thermodynamic system.  相似文献   

7.
By making use of the method of quantum statistics,we directly derive the partition function of bosonic and fermionic fields in Reissner-Nordstrom-De Sitter black Hole and obtain the integral expression of black hole‘s entropy and the entropy to which the cosmic horizon surface corresponds.It avoids the difficulty in solving the wave equation of various particles.Then via the improved brick-wall method,i.e.the membrane model,we calculate black hole‘s entropy and cosmic entropy and find out that if we let the integral upper limit and lower limit both tend to the horizon,the entropy of black hole is proportional to the area of horizon and the entropy to which cosmic horizon surface corresponds is proportional to the area of cosmic horizon.In our result,the stripped term and the divergent logarithmic term in the original brick-wall method no longer exist.In the whole process,the physical idea is clear and the calculation is simple.We offer a new simple and direct way for calculating the entropy of different complicated black holes.  相似文献   

8.
In the present paper, we solve the radial parts of Dirac equation between the inner and the outer horizon in the Schwarzschild-de Sitter (SdS for short) geometry. Complete physical parameter space is divided into two regions depending on the height of the potential barrier and the energy of the incoming particle. In each region, we concentrate on two limiting cases. The first case is when the two horizons are close to each other and the second case is when the horizons are far apart. In each case, we give the semi-analytical solution by using WKB (Wentzel-Krames-Brillouin) approximation and show the instantaneous reflection and transmission coefficients as well as the radial wave functions graphically. PACS: 04.20.-q, 04.70.-s, 04.70.Dy, 95.30.Sf  相似文献   

9.
Using the WKB approximation, we evaluate both the massless and massive scalar and Dirac fields quasinormal modes (QNMs) of a Schwarzschild-de Sitter black hole. The result shows that the field with higher masses and larger cosmological constant λ will decay more slowly. We also found that the global monopole is similar to a factor to modify the κ of Dirac field or l of scalar field, where κ is the angular momentum number of Dirac field, and l is the angular momentum number of scalar field.  相似文献   

10.
The Hawking radiation via tunneling from the dilaton black hole in de Sitter universe is investigated using Parikh Wilczek's method. We show that if the self-gravitational interaction and energy conservation are taken into account, the modified radiation spectrum deviates from exact thermal spectrum and satisfies the unitary theory.  相似文献   

11.
There is much interest in resolving the quantum corrections to Bekenstein-Hawking entropy with a large length scale limit. The leading correction term & given by the logarithm of black hole area with a model-dependent coefficient. Recently the research for quantum gravity implies the emergence of a modification of the energy-momentum dispersion relation (MDR), which plays an important role in the modified black hole thermodynamics. In this paper, we investigate the quantum corrections to Bekenstein-Hawking entropy in four-dimensional Sehwarzschild black hole and Reissner-Nordstrom black hole respectively based on MDR.  相似文献   

12.
Recently, there has been much attention devoted to resolving the quantum corrections to the BekensteinHawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.  相似文献   

13.
There is much interest in resolving the quantum corrections to Bekenstein-Hawking entropy with a large length scale limit. The leading correction term is given by the logarithm of black hole area with a model-dependent coefficient. Recently the research for quantum gravity implies the emergence of a modification of theenergy-momentum dispersion relation (MDR), which plays an importantrole in the modified black hole thermodynamics. In this paper, we investigate the quantum corrections to Bekenstein-Hawking entropy in four-dimensional Schwarzschild black hole and Reissner-Nordström black hole respectively based on MDR.  相似文献   

14.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-- Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coetticient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty prlnciple and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.  相似文献   

15.
The strictly thermal spectrum in dragging coordinate system and the tunneling radiation characteristics of stationary axisymmetry Kerr-Newman de Sitter black hole is studied. The result shows that the tunneling rates at the event and cosmological horizon are related to the change of Bekenstein-Hawking entropy and that the factual radiation spectrum is not strictly pure thermal. Thus an exact correction to the Hawking thermal spectrum is present.  相似文献   

16.
In this paper, we use the modified Hod's treatment and the Kunstatter's method to study the horizon area spectrum and entropy spectrum in Gauss-Bonnet de-Sitter space-time, which is regarded as the natural generalization of Einstein gravity by including higher derivative correction terms to the original Einstein-Hilbert action. The horizon areas have some properties that are very different from the vacuum solutions obtained from the frame of Einstein gravity. With the new physical interpretation of quasinormal modes, the area/entropy spectrum for the event horizon for nearextremal Gauss-Bonnet de Sitter black holes are obtained. Meanwhile, we also extend the discussion of area/entropy quantization to the non-extremal black holes solutions.  相似文献   

17.
This paper shows that the black hole entropy can be interpreted as emerging as a result of missing information about the exact state of the matter from which the black hole was formed.  相似文献   

18.
The simplest possible equation for Hawking radiation and other black hole radiated power is derived in terms of black hole density, ρ . Black hole density also leads to the simplest possible model of a gas of elementary constituents confined inside a gravitational bottle of Schwarzchild radius at tremendous pressure, which yields identically the same functional dependence as the traditional black hole entropy S bh∝ (kAc 3)/ℏ G. Variations of S bh can be obtained which depend on the occupancy of phase space cells. A relation is derived between the constituent momenta and the black hole radius R H, p = which is similar tothe Compton wavelength relation.  相似文献   

19.
The surface gravity of Schwarzschild black hole can be quantized from the test particle moving around different energy states analog to the Bohr's atomic model. We have quantized the Hawking temperature and entropy of Schwarzschild black hole from quantization of surface gravity. We also have shown that the change of entropy reduces to zero when the boundary shrinks to very small size.  相似文献   

20.
Recently, Hawking radiation of the black hole has been studied using the tunnel effect method. It is found the radiation spectrum of the black hole is not a strictly pure thermal spectrum. How the departure from pure thermal spectrum affects the entropy? This is a very interesting problem. In this paper, we calculate the partition function by energy spectrum obtained by tunnel effect. Using the relation between the partition function and entropy, we derive the expression of entropy the general charged black hole. In our calculation, we not only consider the correction to the black hole entropy due to fluctuation of energy but also consider the effect of the change of the black hole charges on entropy. We discuss Reissner-Nordstrom black hole and obtain that Reissner-Nordstrom black hole cannot approach the extreme black hole by changing its charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号