首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王榕  黄芬  王鹏博  李东辉 《分子催化》2020,34(3):272-291
炭材料具有比表面积大、孔径可调、取材广泛等优点,以其为载体负载金属活性组分制备硅氢加成催化剂极具发展前景.我们详细总结了近20年不同炭材料如活性炭、石墨与石墨烯、碳纳米管、富勒烯、卡宾等在硅氢加成反应中负载金属催化剂的制备方法、催化性能以及可能的催化机理,并对有望应用到该反应的新型炭材料载体进行了对比与展望.认为未来硅氢加成炭负载型催化剂的研究可聚焦于(1)探寻新型双金属活性组分以进一步提高催化活性;(2)研发更具优势的金属配体,明晰配体与载体、配体与金属之间的相互作用关系以提高催化选择性与稳定性;(3)结合科学可靠的催化机理研究,以期研发出更符合可持续发展要求的炭负载型硅氢加成金属催化剂,可使硅氢加成反应基本实现原子经济性.  相似文献   

2.
刘杰  蓝国钧  邱一洋  王小龙  李瑛 《催化学报》2018,39(10):1664-1671
聚氯乙烯是五大工程塑料之一,在国民经济中占有重要的地位.基于中国富煤少油缺气的能源格局,我国主要采用基于煤化工的电石法氯乙烯生产工艺,但该工艺必须采用氯化汞催化剂,受到国际限汞公约的影响,无汞催化剂的开发迫在眉睫.其中炭负载金催化剂在该反应中活性最高,近几年来取得了较大进展,有望实现产业化.氮掺杂的炭材料在诸多反应中展现了较好的性能,其负载金属催化剂可以有效提高金属的分散度及稳定性,成为近几年多相催化领域的一个研究热点.最近我们课题组报道了一种氮掺杂中孔成型的制备方法:以小麦粉为原料,通过直接炭化法制备了氮掺杂中孔成型炭,这种氮掺杂中孔成型炭作为无汞催化剂在乙炔氢氯化反应中显示出了优异的催化性能.小麦粉衍生的氮掺杂中孔成型炭具有成型容易.原料价廉易得、易于放大生产等优点,是优选的工业化催化剂的载体.本文以这种氮掺杂的成型炭为载体制备了负载型金催化剂,研究其催化乙炔氢氯化性能.结果表明,氮的掺杂使得中孔炭负载金(Au/N-MC)催化剂上乙炔氢氯化活性明显提高.在氯化氢/乙炔比例1.1、反应温度180℃、乙炔空速600 h~(-1)的条件下,Au/N-MC上的乙炔转化率为50%,是Au/MC催化剂活性的2倍.通过对催化剂的表征发现,氮的掺杂能有效地锚定Au/N-MC催化剂中活性组分Au~(3+),抑制催化剂制备过程中Au~(3+)还原为Au~0,从而提高催化剂活性和稳定性.小麦粉衍生的氮掺杂中孔炭的原料廉价易得,生产工艺简单,易成型,也容易实现工业化生产,是负载型金属催化剂的优良载体,其负载的无汞催化剂性能优越,有望取代电石法氯乙烯产业的汞催化剂,成为新一代无汞催化剂.  相似文献   

3.
通过对丙烷在负载型金属催化剂 上临氢脱氢反应性能的考察,发现除 负载 型Pt、Pd等具有脱氢活性外;负载型Cu 也同样具 有脱氢活性,并且随Cu载量增加而升高。对催化剂稳定性研究结果表明,载体与金属组分间相互作用是不容忽视的因素之一。催化剂选择性影响 因素主要是加氢裂化或氢解反应。因此,对催化剂脱氢选择性的改善既可通过调变金属组分的脱氢加氢性能,也可通过改变载体酸性进行。  相似文献   

4.
通过对丙烷在负载型金属催化剂上临氢脱氢反应性能的考察,发现除负载型Pt、Pd等具有脱氢活性外;负载型Cu也同样具有脱氢活性,并且随Cu载量增加而升高。对催化剂稳定性研究结果表明,载体与金属组分间相互作用是不容忽视的因素之一。催化剂选择性影响因素主要是加氢裂化或氢解反应。因此,对催化剂脱氢选择性的改善既可通过调变金属组分的脱氢加氢性能,也可通过改变载体酸性进行。  相似文献   

5.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

6.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPa H2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO2,Pt/TiO2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

7.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m~2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPaH_2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO_2,Pt/TiO_2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO_2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO_2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

8.
生物质转化为平台分子,进一步转化成燃料和化学品是生物质利用的重要途径之一。本文总结了水相加氢反应及其催化剂的研究进展,指出了水相催化反应对催化剂的调控合成带来的挑战,如活性组分的流失,催化剂表面重构及毒化等。总结了水相催化加氢反应中高活性及高稳定性加氢催化剂的合成策略:如载体表面结构调控、炭的表面包覆、载体与金属活性组分之间相互作用的增强及新结构催化剂的设计合成等,指出了水相加氢反应的催化剂设计合成的发展方向,为生物质催化转化研究提供参考。  相似文献   

9.
正金属原子具有极强的配位能力,在催化领域有着广泛的应用~1。负载型金属催化材料兼具金属纳米颗粒和载体的双重性能,成为应用最广泛的非均相催化剂之一~2。然而,负载型催化剂活性组分多包覆于载体中,不利于与反应物直接接触,并且在反应过程中,活性组分容易从载体表面脱落。无载体金属催化剂可节约催化剂的生产时间  相似文献   

10.
通过原位合成法制备了氮掺杂石墨烯负载钯纳米颗粒催化剂Pd@N/C-2,用于催化香兰素选择性加氢反应.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)等方法对Pd@N/C-2催化剂进行结构与性能的表征,分析表明石墨烯层在活性钯纳米颗粒表面起到了保护作用,提高了催化剂在反应条件下的稳定性,在五次循环回收实验后催化剂仍保持很高的反应活性.通过对石墨烯掺杂氮原子引入了催化反应的化学活性中心和金属纳米颗粒沉积的锚定中心,从而使石墨烯在加氢催化反应中的性能得到进一步提高.并且通过对溶剂的调控实现了香兰素分别高选择性生成香草醇和对甲基愈创木酚,在优化的反应条件下,香草醇和对甲基愈创木酚的产率分别为89%和99%.  相似文献   

11.
综述了负载型单原子催化剂设计的最新进展,以及负载型单原子催化剂在多种反应,如低温水汽变换、甲醇蒸汽重整、选择性乙醇脱氢、炔烃和二烯烃的选择性加氢等反应中的应用.研究活性金属原子位的固有活性和选择性,并与相应的金属纳米颗粒和次纳米簇的性质相比较是非常重要的.同时,理解在不同反应环境下稳定的活性金属原子位的组成,并最大化其负载量可使我们设计出适合工业应用的强健催化剂.在实际工作中,应将催化剂活性和稳定性研究相结合,尽可能遵循活性位随催化剂实时处理条件的变化规律.原子尺度的先进表征方法至关重要,可用于指导设计新催化剂.  相似文献   

12.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

13.
张敏  魏娟娟  欧阳津  那娜 《分析试验室》2022,(12):1400-1410
不同于纳米和亚纳米催化,单原子催化在负载极低金属含量的同时能极大地提高金属原子的利用率,具有更优越的催化性能。单原子催化剂(SACs)是一种特殊的负载型金属催化剂,指载体上的所有金属组分都以单原子分散的形式存在。当催化剂的尺寸是单原子级别时,其原子利用率达到了百分百,此时其能级结构、电子结构会发生根本性变化,表面自由能急剧增大,催化活性随之增加;但孤立的金属单原子容易聚集导致催化活性下降,因此能锚定单原子的载体尤为重要。载体既可以起到固定单原子的作用,又可以协同单原子提高反应催化活性,是催化领域的研究前沿。本文基于Pt单原子催化剂具有贵金属用量少、活性高、稳定性好、金属-载体相互作用强等优点,介绍了Pt单原子的几种载体,包括氧化物材料,有机金属框架(MOF)材料,碳基材料以及其他材料。对Pt单原子的表征方法以及Pt单原子催化剂在电催化析氢反应(HER),氧还原反应(ORR),CO氧化及其他方面的应用进行了概述,对Pt单原子材料的发展趋势进行了展望。  相似文献   

14.
将钴金属纳米粒子负载在具有高比表面积的氮掺杂多级孔碳(Co/HNPC)上,并用于糠醛(FF)的催化转移加氢反应。实验结果表明,Co/HNPC在120℃、4 h的温和条件下,获得了97.6%的FF转化率和95.3%的糠醇(FOL)选择性。优异的催化性能主要取决于金属与HNPC载体之间的协同作用,以及金属本身的负载量。此外,由于HNPC载体的高比表面积和氮掺杂,Co/HNPC催化剂的稳定性也得到了提高。  相似文献   

15.
综述了负载型单原子催化剂设计的最新进展,以及负载型单原子催化剂在多种反应,如低温水汽变换、甲醇蒸汽重整、选择性乙醇脱氢、炔烃和二烯烃的选择性加氢等反应中的应用.研究活性金属原子位的固有活性和选择性,并与相应的金属纳米颗粒和次纳米簇的性质相比较是非常重要的.同时,理解在不同反应环境下稳定的活性金属原子位的组成,并最大化其负载量可使我们设计出适合工业应用的强健催化剂.在实际工作中,应将催化剂活性和稳定性研究相结合,尽可能遵循活性位随催化剂实时处理条件的变化规律.原子尺度的先进表征方法至关重要,可用于指导设计新催化剂.  相似文献   

16.
构建催化剂特别是在亚纳米尺度下分散的贵金属催化剂的构效关系是多相催化研究领域中的主要任务之一.我们采用与金属Pt具有强相互作用的MgAl2O4尖晶石作为载体,通过简单浸渍法制备了在纳米、亚纳米和单原子尺度上分散的Pt催化剂.首先利用X射线衍射和原子分辨的球差校正电镜,确定了Pt在MgAl2O4尖晶石载体表面上随负载量增大逐渐形成孤立的和相邻的单原子Pt,然后逐渐形成无定形Pt聚集体和小晶粒;然后利用电感耦合等离子体光谱和CO化学吸附测定了催化剂中Pt的含量和分散度;进一步通过测定CO在Pt表面吸附的红外光谱,区分了载体表面单原子和金属颗粒表面原子的CO吸附特征结构,并据此对不同结构的Pt原子进行了半定量估算.考察了具有不同Pt分散结构的Pt/MgAl2O4催化剂的催化苯甲醛选择性加氢能力,发现以载体表面Pt单原子物种为主的催化剂,可在较宽的温度区间内保持较高的部分加氢产物苯甲醇的选择性(60–150oC,苯甲醇选择性99.4–97.9%,甲苯选择性~0.4%),而以Pt纳米颗粒为主的催化剂上苯甲醇选择性降低显著,同时生成较多深度加氢产物甲苯(60–150oC,苯甲醇选择性99.0–93.1%,甲苯选择性0.7–5.0%).此外,我们测定了各催化剂在不同转化率(~20–90%)时催化剂加氢反应的质量比活性和转化频率(TOF),并在较低苯甲醛转化率(~20%)时,估算了不同结构Pt物种对苯甲醛加氢反应的本征活性,发现Pt纳米颗粒表面原子比MgAl2O4载体表面Pt单原子本征活性更高(4807 h–1 versus 3277 h–1).综上,Pt单原子催化剂具有贵金属原子利用率高,本征活性和加氢选择性高等优点;Pt纳米催化剂表面原子深度加氢能力强,加氢选择性较差,虽本征活性更高,但不足以补偿贵金属原子利用率降低带来的活性损失,Pt质量比活性显著低于单原子催化剂.此外,MgAl2O4尖晶石负载的单原子Pt催化剂也具有良好的催化反应循环稳定性,是一种较为理想的催化苯甲醛选择性加氢制苯甲醇催化剂.  相似文献   

17.
氮掺杂碳材料负载Pd纳米催化剂因其具有反应活性高、反应完成后便于分离和重复使用等优点,在催化领域引起了极为广泛的关注.简要综述了基于氮掺杂多孔/介孔碳NC、氮掺杂石墨烯NG、氮掺杂碳纳米管NCNT和氮掺杂碳纳米片NCNS等不同类型碳材料载体制备的负载型Pd纳米催化剂的合成与应用的最新研究进展,同时对氮掺杂碳材料负载Pd纳米催化剂的发展方向进行了展望.  相似文献   

18.
通过热解蔗糖/Al2O3前驱体的方法制备了炭包覆改性Al2O3(CCA)载体,并采用等体积浸渍制备了负载量17 %的镍基催化剂.对载体及相应催化剂进行了TPO-MS、N2物理吸附、TPR、XRD等测试表征,并考察了催化剂顺酐(MA)加氢合成γ-丁内酯(GBL)的反应性能.结果表明,适量炭的引入改变了载体Al2O3的表面性质,使金属-载体相互作用减弱,活性组分镍的分散度提高,催化剂在MA加氢反应中表现出高的GBL选择性.当Al2O3中引入8.9 %的炭时,催化剂表现出最高的催化活性,在210 ℃,5 MPa氢气压力下反应3 h时,MA转化率达98%以上,GBL选择性达91.71 %.  相似文献   

19.
化学选择性是评价催化剂性能最重要的参数之一,它直接决定了产物的经济价值及后续的分离成本.传统的负载型金属催化剂由于其金属粒径分布不均,且不同原子数组成的粒子通常具有特征产物选择性,从而限制化学选择性的提高;另一方面,对于金属多原子活性中心,反应物在催化剂表面可以存在多种吸附构型进而衍化为不同产物,产物可控性差.因此,获得金属尺寸均一,且具有原子分散的活性中心,即单原子催化剂,成为官能团多相催化转化高选择性的迫切需求.本课题组通过400 oC还原1%-Pd/ZnO得到PdZn金属间化合物,依据其规律排布的Pd-Zn-Pd单元获得Pd基单原子催化剂.该催化剂在乙烯化工中少量乙炔的加氢转化反应中获得令人欣喜的催化性能——兼具有乙炔的高转化率和乙烯的高选择性.结合微量吸附量热、理论计算等表征,Pd活性中心在PdZn金属间化合物中的特殊空间排布是其优异催化性能的根源,即乙炔以较强的σ键吸附在两个相邻的单Pd金属中心,易吸附活化加氢生成乙烯,而乙烯则吸附于单Pd金属中心,较弱的π键形式吸附有利于其脱附避免过渡加氢.基于前期研究,构筑具有均一单金属中心的负载型单原子催化剂是获得高选择性的另一有效方法,且较之于PdZn金属间化合物催化剂,该类单原子催化剂兼具有原子利用率最大化的优点.本文采用等体积浸渍法制备Pd/ZnO催化剂,通过降低Pd金属含量(1 wt%→0.1 wt%→0.01 wt%)并在较低的温度下(100 oC)还原(H2-TPR表明高温还原形成PdZn金属间化合物型合金)得到负载型单原子催化剂(Pd1/ZnO SAC).高分辨电镜结果表明,当Pd负载量由1%降至0.1%,金属纳米颗粒的粒径尺寸显著降低,而在0.01%-Pd/ZnO催化剂表面,Pd活性中心则以单原子状态分散于载体ZnO表面.X-射线吸收光谱及电子能谱表明,随着负载量的降低,Pd活性物种具有更高的正电性.该催化剂在乙炔选择性加氢反应中表现出更加优越的催化性能,具有与PdZn催化剂相当的高选择性,而更优的比活性.这归结于Pd1/ZnO单原子催化剂的Pdδ+单原子活性中心有助于其与乙炔的静电相互作用并吸附活化加氢生成乙烯,并促使乙烯以较弱的π键吸附,从而易于从催化剂表面脱附获得高选择性.  相似文献   

20.
单原子催化的最新进展   总被引:1,自引:0,他引:1  
单原子催化剂由于其自身兼具均相催化剂的"孤立活性位点"和多相催化剂易于循环使用的特点,近年来受到了广泛关注.本综述概括了2015至2016年单原子催化领域的重要进展,重点介绍了新的催化剂制备方法、单原子金催化剂在CO氧化中的进展、单原子钯/铂催化的选择性加氢反应以及铂或非贵金属单原子催化剂在电化学中的应用等.在催化剂的合成方面,用传统的湿化学方法制备的单原子催化剂通常金属负载量较低,使得催化剂的常规表征比较困难.最近发展的一系列新型合成方法例如原子层沉积法、高温蒸汽转移法、光介还原法以及热解法等制备M?N?C等非贵金属催化剂等,尽管有不同程度的局限性,但均可以成功制备高负载量的单原子催化剂.单原子催化剂的载体得到了拓展,除传统的金属氧化物外,金属有机框架材料和二维材料等均被用于单原子催化剂的制备.在单原子催化剂的应用方面,金由于较高的电负性和与氧的弱相互作用能力,因而与氧化物载体作用较弱,不易形成单原子催化剂.但近期报道了成功制备的单原子金催化剂,在CO氧化反应、乙醇脱氢和二烯加氢反应中都有不错的进展.本文还介绍了铂和钯单原子(合金)催化剂在加氢反应中的优异活性及选择性,表明了单原子催化剂在选择性上的优势.将一种金属掺杂到另一种金属基底中制备的单原子合金催化剂也因其特异的性能备受关注.此外,对于化工生产中典型的均相催化反应,如氢甲酰化,单原子催化剂在无外加膦配体的情况下表现出高活性的同时还能很好地控制化学选择性,甚至达到令人满意的区域选择性,从实验上证明了单原子催化剂有望作为沟通均相催化和多相催化的桥梁.单原子催化剂在电催化和光催化中也得到了快速发展.铂单原子催化剂因其高原子利用率和高稳定性,在析氢反应和氧还原反应中有着良好的应用前景.另一方面,非贵金属特别是Co单原子催化剂在光电催化中因其优异的活性和巨大潜力得到了较深入的研究.除了上述进展,单原子催化领域还有许多基本问题需要继续深入研究,对单原子催化剂更加全面透彻的认识将为设计发展新型催化体系,扩展单原子催化领域提供指导和借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号