首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用水热法合成具有四角星形貌的钒酸铋,再将钒酸铋浸渍在碱溶液里二次水热,制备出BiVO_4/Bi_2O_3催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM),紫外-可见漫反射(UV-Vis DRS)等方法对样品进行表征。可见光下,BiVO_4/Bi_2O_3复合物的光催化降解罗丹明B性能及光电流响应均优于纯BiVO_4。这是由于BiVO_4/Bi_2O_3复合材料形成了异质结构,有效抑制了光生电子与空穴的复合效率。  相似文献   

2.
采用水热法以BiVO_4纳米片为基体原位生长CdS晶体,得到CdS/BiVO_4复合光催化剂,利用XRD、SEM、UV-Vis DRS等方法对材料进行了表征,通过降解亚甲基蓝对样品的光催化性能进行评价。结果表明,BiVO_4为方形片状颗粒,其表面附着棒状CdS纳米颗粒,分散较好。CdS/BiVO_4复合光催化剂表现出较高的光催化活性,在可见光照射下,利用CdS/BiVO_4光催化降解亚甲基蓝,60 min后的降解率达94.79%,相比于纯相BiVO_4和CdS有显著提高,且对多种有机染料均有良好的降解效果,重复使用性较好。机理研究发现,超氧自由基(·O_2~-)是CdS/BiVO_4光催化降解亚甲基蓝的主要活性物种。  相似文献   

3.
以Bi(NO_3)_3·5H_2O和NH_4VO_3为原料,控制水溶液介质p H及反应时间,采用水热合成法制备钒酸铋(BiVO_4)及其复合物(BiVO_4/Bi_6O_6(OH)_3(NO_3)_3).利用X-射线粉末衍射、扫描电子显微镜和紫外-可见漫反射吸收光谱等手段对制备的样品进行了物理表征,结果表明,在控制反应时间为1 h,介质p H值在1.14~9.01之间时,制备的样品为BiVO_4/Bi_6O_6(OH)_3(NO_3)_3复合物,当p H值增加至10.92时为纯BiVO_4;控制介质p H为7.17,反应时间在1~12 h之间时得到BiVO_4/Bi_6O_6(OH)_3(NO_3)_3复合光催化剂,反应时间为18 h时为纯BiVO_4.在可见光(λ≥400 nm)照射下,以有机染料罗丹明B(Rhodamine B,Rh B)为底物,研究不同条件制备的BiVO_4或者复合物为光催化剂的光催化特性,发现p H=7.17,水热反应12 h得到的催化剂(BiVO_4/Bi_6O_6(OH)_3(NO_3)_3)光催化降解活性高于对照制备的纯BiVO_4.同时在可见光照射下,BiVO_4/Bi_6O_6(OH)_3(NO_3)_3亦可以有效降解无色小分子2,4-二氯苯酚(2,4-Dichlorophenol,2,4-DCP),说明氧化过程涉及到光催化过程.分析BiVO_4/Bi_6O_6(OH)_3(NO_3)_3复合光催化剂对Rh B光催化降解过程中活性物种,表明在降解过程中主要涉及空穴和超氧氧化,O_2·~-起主要作用.  相似文献   

4.
通过简单溶剂热法制备了一种新型复合光催化剂BiVO_4/M IL-53(Fe);运用XRD、SEM/EDS、FT-IR、N_2吸附-脱附和UV-vis DRS等手段对其进行表征,并对其光催化降解RhB活性进行了研究,提出了相应的光催化降解RhB的可能机理。结果表明,相较于单一BiVO_4材料,复合催化剂的比表面积增大,且其光催化效率相较于纯BiVO_4和MIL-53(Fe)也有了较大的提高;其中,BF-2复合材料的光催化活性最高,分别约为纯MIL-53 (Fe)和BiVO_4的5. 2倍和8. 1倍。同时,BiVO_4/MIL-53(Fe)复合光催化剂经过四次循环实验后,仍能保持较稳定的光催化活性和结构。  相似文献   

5.
采用水热法制备粒径为1~2μm的BiVO_4微米片,然后在微米片表面沉积不同含量的Ag_2CO_3颗粒,制备Ag_2CO_3/BiVO_4复合微米片光催化剂。利用X射线粉末衍射(XRD)、扫描电镜(SEM)、红外光谱(FTIR)、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光(PL)光谱、瞬态光电流-时间响应对催化剂进行表征。以可见光为光源,罗丹明B为降解对象进行光催化活性测试。结果表明,复合适量Ag_2CO_3有利于提高光催化剂的比表面积,改善催化剂的表面性能。活性测试结果表明,当复合10%(w/w)Ag_2CO_3时,Ag_2CO_3/BiVO_4光催化活性最佳,比纯BiVO_4提高4.4倍。光致发光(PL)光谱、瞬态光电流-时间响应测试结果表明,复合Ag_2CO_3能有效抑制光生电子与空穴的复合。自由基捕获实验结果表明,该体系的活性氧物质为空穴和羟基自由基。Ag_2CO_3/BiVO_4复合光催化剂活性提高的原因,是较宽带隙的Ag_2CO_3与较窄带隙的BiVO_4形成的异质结有效抑制了光生电子与空穴的复合,同时两者适宜的能带结构保证产生更多的空穴,从而具有更强的氧化能力。  相似文献   

6.
以g-C_3N_4和BiVO_4为主要原料,用高温水热法合成出BiVO4/g-C_3N_4复合催化剂。采用X-射线衍射(PXRD)和紫外-可见漫反射吸收光谱(UV-Vis),对复合催化剂BiVO_4/g-C_3N_4的结构进行表征。在可见光下,考察此复合催化剂对亚甲基蓝的降解性能。研究发现,复合催化剂具有g-C_3N_4和BiVO_4结构特征,在X-射线衍射峰上显示出轻微的宽化,质量比为10%的BiVO_4/g-C_3N_4光催化剂降解活性最好,其降解率在360分钟能达到70.6%。  相似文献   

7.
经由溶剂热反应、光辅助还原过程制备Bi/Bi VO_4Bi_4V_2O_(11)纳米复合光催化材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、N_2吸附-脱附等温线和光致发光(PL)等手段对该复合物进行表征。实验结果表明当金属Bi与BiVO_4Bi_4V_2O_(11)的质量比值为0.8,可见光照射30 min时,Bi/BiVO_4Bi_4V_2O_(11)复合催化剂对罗丹明B(RhB)的降解率可达95.6%。此外,Bi/BiVO_4Bi_4V_2O_(11)对四环素(TC)的降解也表现出增强的光催化性能。Bi/BiVO_4Bi_4V_2O_(11)复合材料提升的光催化性能可能归因于金属Bi的表面等离子体共振(SPR)效应、拓宽的可见光吸收范围和增大的比表面积。此外,提出了复合光催化剂可能的光催化机理。  相似文献   

8.
尚义  牛富军  沈少华 《催化学报》2018,39(3):502-509
光催化水分解反应是解决当前世界范围严峻的能源与环境问题的一种有效途径.光催化分解水过程可以分为产氢和产氧两个半反应.产氧反应过程复杂,动力学缓慢,是光催化分解水的限速步骤,因此需要探索性能优异的水氧化催化剂(WOCs)来提高产氧半反应的效率.钒酸铋近年来被广泛研究并应用于光催化产氧领域.钒酸铋拥有合适的带宽(2.4 eV)以及较好的稳定性,但是其应用受到其严重的电子空穴复合率、较低的电荷传输能力以及较差的反应动力学的限制.以往研究表明,通过构建复合光催化体系可以有效促进光生电荷的分离与传输,提高材料的光催化性能.因此,我们提出构建新型的BiVO_4/M(dca)_2(M=Co,Ni)复合体系,其中,BiVO_4作为光敏化剂,M(dca)_2作为水氧化催化剂.红外测试和紫外可见测试的结果表明,M(dca)_2通过物理吸附的方式附着在BiVO_4表面,形成BiVO_4/M(dca)_2复合光催化剂体系.复合体系的产氧活性相较于纯BiVO_4有明显的提升.光催化产氧测试结果表明,BiVO_4/Co(dca)2和BiVO_4/Ni(dca)_2复合体系的产氧活性分别可达508.1和297.7μmol/(h·g),而纯BiVO_4的产氧活性只有252.2μmol/(h·g).进一步的稳定性测试结果表明,BiVO_4/Co(dca)2复合体系在30 h的测试过程中能够保持稳定的活性.ICP-MS和XPS的表征结果证明了催化过程中分子催化剂良好的稳定性,排除了反应过程中生成氧化物进而促进产氧活性的可能.对该复合体系的一系列电化学表征证明,M(dca)_2有效改善了BiVO_4/电解液界面的电荷传输性能,从而促进了光催化产氧性能.其中,莫特-肖特基测试表明,M(dca)_2的加入增大了能带弯曲,提高了空穴传递的驱动力,阻抗谱的测试证明了复合体系具有较低的界面电阻,有利于载流子的迁移.通过对复合体系光生载流子分离和注入效率的表征,可以证明,在BiVO_4/M(dca)_2复合体系中,光生空穴能够有效地从BiVO_4迁移到M(dca)_2,进而参与光催化产氧反应并且光催化活性有明显的提升.其中,由于Co(dca)2能够更加有效地改善BiVO_4/电解质的水氧化反应动力学过程,其活性显著优于BiVO_4/Ni(dca)_2体系和纯BiVO_4.此外,基于实验结果和各项表征,我们进一步提出了BiVO_4/Co(dca)2光催化产氧反应的反应机理:光照条件下,BiVO_4中电子跃迁至导带,进而被牺牲剂消耗,而价带上的空穴则传递至分子催化剂进行化学反应,其中,分子催化的反应机理遵循水亲核攻击的模型.  相似文献   

9.
社会经济快速发展的同时,也带来了日益严峻的环境污染问题.半导体光催化氧化技术因节能环保而在环境领域有广阔的应用前景.作为最具有代表性的半导体光催化材料,TiO_2因为其禁带宽度(3.2 eV)比较大,只能被紫外光激发,因而对太阳能的利用率较低.作为一种最简单的含铋层状氧化物,Bi_2WO_6的禁带宽度(2.7 eV)相对较小,可以部分利用太阳光中的可见光,因而受到广大研究者的青睐.但是,Bi_2WO_6光催化材料的可见光响应范围较窄,仅能被波长小于450 nm的光激发,且激发后的光生载流子容易复合,导致光催化效率不高.因此,迫切需要对Bi_2WO_6光催化材料进行结构修饰与改性,采用拓展其光响应范围和抑制载流子复合,来提高其光催化活性.本文采用离子交换法原位合成了具有核-壳结构的Bi_2S_3@Bi_2WO_6纳米片,充分利用Bi_2S_3优良的可见光响应性能和半导体异质结光催化剂的构建,来提高Bi_2WO_6的光催化活性.结果表明,随着Na2S·9H2O用量从0增加到1.5 g,所得催化剂的光活性不断提高,X3B的降解速率常数由0.40×10~(-3) min~(-1)增加到6.6×10~(-3) min~(-1),催化剂活性提高了16.5倍.当进一步增加Na2S·9H2O的用量时(1.5.3.0 g),复合催化剂的光活性下降.这是由于过多Na2S·9H2O的引入导致在催化剂表面生成了没有光活性的NaBiS2层(Bi_2S_3+Na_2S=2NaBiS_2),占据了催化剂的活性位点,阻碍了染料分子与催化剂的直接接触.Bi_2WO_6@Bi_2S_3异质结纳米片光活性的提高,可归因于Bi_2S_3的敏化作用极大拓展了复合催化剂的光响应范围;另一方面,Bi_2WO_6和Bi_2S_3两者之间的半导体异质结效应有效促进了光生载流子在空间的有效分离,抑制了光生电子-空穴的复合,从而提高了复合催化剂的催化效率.本研究为其他半导体复合材料的原位生长制备提供了新的思路  相似文献   

10.
采用一步水热法制备Bi2MoO6/BiVO4复合光催化剂.利用X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)等手段对其晶体结构和微观结构进行了表征.结果表明,Bi2MoO6纳米粒子沉积在BiVO4纳米片表面从而形成异质结结构.紫外-可见漫反射光谱(UV-Vis DRS)表明所制备的Bi2MoO6/BiVO4异质结较纯相Bi2MoO6和BiVO4对可见光吸收更强.由于形成异质结结构及其光吸收性能使Bi2MoO6/BiVO4光催化活性有较大提高.可见光下(λ420 nm)光催化降解罗丹明B(RhB)实验结果表明,Bi2MoO6/BiVO4光催化活性较纯相Bi2MoO6和BiVO4高.Bi2MoO6/BiVO4样品光催化性能提高的原因是Bi2MoO6和BiVO4形成异质结,从而有效抑制光生电子-空穴对的复合,增大了可见光吸收范围及比表面积.  相似文献   

11.
本文通过水热法合成球状Bi_2MoO_6,采用热处理法复合Bi_2MoO6和g-C_3N_4,制备出不同质量比例的g-C_3N_4/Bi_2MoO_6复合型光催化剂.利用X射线衍射、扫描电子显微镜、紫外-可见分光光度计、光致发光光谱仪等技术对所制备的光催化剂进行基本物性表征,分析了样品的微观结构、尺寸形貌和光学性质.g-C_3N_4与Bi_2MoO_6之间理想匹配的能带结构促进了光生载流子转移,进而提升光生电子和空穴的分离率,达到提高光催化活性的目的.g-C_3N_4/Bi_2MoO_6复合材料在可见光下展现出对罗丹明B高效的降解活性,其中Bi_2MoO_6与g-C_3N_4质量比为10%时展示出最佳的光催化降解性能,其降解速率分别为纯g-C_3N_4和Bi_2MoO_6的6.5和3.3倍.  相似文献   

12.
毛晓明  李敏  刘晨  秦永燕 《化学通报》2021,84(7):715-719
采用水解法合成了Bi_4O_5Br_2光催化剂,并通过XRD、SEM和DRS等手段对催化剂的结构、形貌和光吸收性质进行了表征。结果表明,催化剂呈不规则片状结构,其带隙能为2.1eV,价带电位E_(VB)和导带电位E_(CB)分别为2.61和0.51 eV。基于反应原理和表征结果,提出了催化剂形成机理。在可见光照射下,Bi_4O_5Br_2对卡马西平表现出高效的光催化氧化活性,光照120min后,卡马西平的降解率超过90%,反应动力学速率常数k达到0.018min~(-1)。捕获剂实验结果表明卡马西平降解过程中的主要活性物质是光生空穴(h~+)和超氧自由基阴离子(·O~-_2)。致畸作用实验结果表明,可见光照射120min后,卡马西平溶液基本上没有污染。此外,Bi_4O_5Br_2光催化剂在光催化降解卡马西平过程中表现出较高的化学稳定性和可重复性,表明其具有实际应用的潜力。  相似文献   

13.
近年来,有机污染物的问题变得越来越严重.为了解决该问题,人们研究和开发了许多有效的光催化剂.本工作采用水热法和化学沉积法合成了BiVO4/Ag3VO4梯型半导体材料,该复合材料在可见光下具有很强的氧化还原能力.其中40%BiVO4/Ag3VO4具有最佳的光催化降解性能,其降解速率为0.05588 min^-1,分别是BiVO4和Ag3VO4的22.76和1.76倍.并且其性能稳定,经过四次循环后其降解率仍可保持90%以上.BiVO4和Ag3VO4复合后,其催化性能得到增强,归因于形成了新型的梯型光催化机制,该方法促进了光生电荷的分离并延长了电荷的寿命,且通过PL测试和瞬态光电流响应证明了电荷的有效转移.X射线衍射(XRD)可以观察到Ag3VO4和BiVO4物相,没有其他成分.用扫描电子显微镜(SEM)和透射电子显微镜(TEM)进一步观察了该催化剂的结构和形貌,从SEM可以看出,Ag3VO4生长在BiVO4的上面,能谱分析也证明该催化剂仅包含Ag3VO4和BiVO4的各种元素,而不含其他杂质,TEM进一步证明了两种物质复合在一起,而不是机械混合.通过紫外-可见光漫反射光谱(UV-vis)测试可以得到BiVO4和Ag3VO4的吸收带边,进一步计算BiVO4的带隙和导带分别为2.41和0.455 eV,Ag3VO4的带隙和导带分别为2.20和0.04 eV,二者组成的异质结的带隙满足降解的条件.用荧光光谱(PL)和光电流研究了样品的光电特征,结果表明BiVO4/Ag3VO4光催化剂具有很高的载流子分离效率和很低的光电流电阻,这有助于光生载流子的运输.光催化降解甲基蓝实验表明,BiVO4/Ag3VO4具有很强的光催化降解速率(0.05588 min^-1),是BiVO4的22.6倍,Ag3VO4的1.76倍,而且经过四次循环后仍能保持很高的活性.通过XRD发现使用后的催化剂并没有发生变化,说明该催化剂具有良好的稳定性.高分辨X射线光电子能谱(XPS)不仅进一步说明了该催化剂成功复合后没有其他杂质元素,而且从各元素的结合能变化可以看出构成异质结后电子的流向,证实了光催化机制为梯型机制.光照射后,BiVO4和Ag3VO4产生电子空穴对,当催化剂受光激发后,电子从价带被激发到导带,并在价带留下空穴.当BiVO4和Ag3VO4复合后,在接触界面形成内电场,由于库仑相互作用,能带边缘弯曲等作用加速了Ag3VO4价带上某些空穴和BiVO4导带上电子的复合,从而阻止了Ag3VO4和BiVO4内部电子空穴对的复合,这有助于Ag3VO4导带上的电子和BiVO4价带上的空穴参与氧化还原反应.从捕获实验可以看出,本实验中空穴在光催化降解中起着最重要的作用,这与上述结论一致.  相似文献   

14.
采用水热法合成了微球状石墨烯/BiVO_4(Gr/BiVO_4)复合可见光光催化剂,以XRD、SEM、HRTEM、XPS及UV-vis漫反射技术对样品的晶相结构、微观形貌、组成和吸光性能等进行了表征分析。可见光照射下,Gr/BiVO_4样品对MB的降解性能均优于纯BiVO_4,当Gr含量为7.3%,可见光照射100 min时,对MB完全脱色,且重复使用6次后,依然具有较高的光催化活性。这是由于石墨烯与BiVO_4之间存在较强的相互作用,这种强的相互作用可加快BiVO_4粒子和石墨烯之间的电荷传输,有效抑制光生电子和空穴的复合。  相似文献   

15.
众所周知,能源危机和环境污染是当前人们所面临的巨大难题和挑战,因此寻找或开发一种高新的技术解决上述难题尤为重要.近年来,基于半导体的光催化技术被广泛应用于能源制备和环境污染物去除领域,该技术通过直接转化太阳能为化学反应所需的能量来产生催化作用,使周围的氧气或水分子激发成活性物质,进而进行催化反应,且同时催化材料自身不受损耗,被认为是一种高效、安全的环境友好型技术.Bi_4Ti_3O_(12)是一种物理化学性质稳定、环境友好型的半导体材料,也是当前研究较多的一类铋系半导体光催化材料.然而,纯相的Bi_4Ti_3O_(12)纳米材料自身电子分离效率低且可见光响应范围窄,严重限制了其在光催化领域的应用.Ag纳米颗粒具有等离子共振效应,可以形成强的电场作用,从而增强光的利用和电子-空穴对的产生.碳点(CDs)是一类表面基团丰富、具有独特光物理性质的纳米级碳材料.碳点修饰的半导体光催化剂具有良好的稳定性和光催化活性.因此,制备Ag/CDs/Bi_4Ti_3O_(12)复合光催化剂可以有效扩宽Bi_4Ti_3O_(12)的光吸收范围,增强电子-空穴对的分离效率,从而提高光催化活性.本文利用竹子作为碳源,通过简单的水热法合成碳点,以熔盐法合成Bi_4Ti_3O_(12)纳米片,用简单的物理混合法将碳点修饰在Bi_4Ti_3O_(12)表面,再通过光沉积法将Ag~+还原在CDs/Bi_4Ti_3O_(12)的表面,从而制备出Ag/CDs/Bi_4Ti_3O_(12)复合光催化剂.以10mg/L的四环素水溶液作为目标污染物,测试光催化剂在可见光下对目标污染物的降解能力.采用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、透射电镜(TEM)、扫描电镜(SEM)、荧光光谱(PL)和光电流等表征方法分析了催化剂的结构特征、微观形貌和光电性质等.XRD分析表明Bi_4Ti_3O_(12)材料被成功合成,在CDs和Ag纳米颗粒进行修饰后未改变Bi_4Ti_3O_(12)的晶型结构.XPS和EDSmapping的结果均表明复合材料由Ag, C, Bi, Ti和O元素组成,说明Ag/CDs/Bi_4Ti_3O_(12)复合光催化剂成功制备.UV-visDRS结果表明, Ag和CDs的修饰扩宽了Bi_4Ti_3O_(12)的可见光吸收范围.荧光光谱和光电流结果也证明了Ag/CDs/Bi_4Ti_3O_(12)复合光催化剂具有更好的光响应能力和电子分离效率.光催化性能测试最终证实Ag/CDs/Bi_4Ti_3O_(12)复合光催化剂在可见光下具有良好的催化降解能力.循环实验说明Ag/CDs/Bi_4Ti_3O_(12)复合光催化剂具有很好的稳定性,是一种具有潜力的催化材料.用不同捕获剂进行了自由基捕获实验,研究了Ag/CDs/Bi_4Ti_3O_(12)复合光催化剂的催化机理,结果证实超氧自由基和空穴在光催化过程中起主要作用,羟基自由基也部分参与反应.总之,将碳点、Ag纳米颗粒与Bi_4Ti_3O_(12)结合制备的Ag/CDs/Bi_4Ti_3O_(12)复合光催化剂具有良好的光催化性能,该工作为相关材料的制备和光催化研究提供了理论依据.  相似文献   

16.
Ag_3PO_4由于具有独特的活性而被广泛应用于光催化领域.然而,由于其光生电子和空穴的快速复合, Ag_3PO_4的光催化性能在几个循环之后显著下降,光腐蚀限制了它的实际应用.因此,亟需设计一种新型的复合光催化剂来抑制电子空穴对的快速复合.而Z型复合光催化剂可综合不同光催化剂的优点,克服单一光催化剂的缺点.Z方案体系使用两个窄带隙的催化剂取代宽带隙的光催化剂,从而可以捕获更多的光子.并且光催化剂的氧化还原反应分开进行,可以有效地防止电子和空穴的复合,从而大大提高复合光催化剂的性能.本文通过微波水热法和简单搅拌法成功地制备了Z机制WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料.采用X射线衍射、扫描电子显微镜、X射线光电子能谱、N2吸附-解吸等温线、比表面积测定、紫外-可见光谱和光电流曲线等方法对WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料进行了表征.通过这些表征,我们确定了所研究的光催化剂物相高度匹配;确定了光催化剂的形貌:确定了复合光催化剂是复合物,而不是简单的混合物;确定了光催化剂中光生电子和空穴的结合、分离效率;研究了光催化剂的吸收边以及带隙.光催化降解测试发现, WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料在可见光下表现出优异的催化性能,这主要归因于WO_3(H_2O)_(0.333)/Ag_3PO_4的协同作用.其中15%WO_3(H_2O)_(0.333)/Ag_3PO_4的光催化活性最高,在4min内几乎将30m L20mol/L的次甲基蓝完全降解.并且,复合材料的稳定性也得到很大提升.经过5次循环反应后, 15%WO_3(H_2O)_(0.333)/Ag_3PO_4的降解效率仍可以维持在88.2%.相比之下,纯Ag_3PO_4的降解效率仅为20.2%.这表明添加WO_3(H_2O)_(0.333)可以显著提高Ag_3PO_4的耐光腐蚀性.最后,我们详细研究了Z-机制机理.在可见光照射下, Ag_3PO_4和WO_3(H_2O)_(0.333)的表面产生电子-空穴对.WO_3(H_2O)_(0.333)的光生电子首先转移到其导带,然后迁移到Ag_3PO_4的价带中与空穴结合.因此, Ag_3PO_4的光生电子和空穴被有效分离,光生电子连续转移到Ag_3PO_4的导带界面.这样, Ag_3PO_4的导带界面上积累了大量的电子,并且在WO_3(H_2O)_(0.333)的价带界面中积累了大量的空穴.在空穴的作用下,–OH与h~+反应生成·OH,·OH与污染物甲基蓝反应生成CO_2和H_2O.同时,大量的H~+和O_2与电子反应,在Ag_3PO_4的导带界面处产生H_2O_2.之后, H_2O_2与电子反应产生·OH,·OH与甲基蓝反应形成CO_2和H_2O.这样,光生电子和空穴连续分离,大大提高了光催化反应速度,最终催化剂的光催化活性得到极大的提高.  相似文献   

17.
利用原位沉积法将Bi OBr纳米片生长到g-C_3N_4表面,制得g-C_3N_4-Bi OBr p-n型异质结复合光催化剂。采用X射线衍射(XRD)、红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、紫外可见漫反射(UV-Vis-DRS)和荧光光谱(PL)等测试对光催化剂结构和性能进行表征。通过可见光辐照降解甲基橙水溶液检测评估复合光催化剂光催化活性。研究结果表明:复合光催化剂由Bi OBr和g-C_3N_4两相组成,Bi OBr纳米片在片状g-C_3N_4表面快速形核生长形成面-面复合结构。相比于纯相g-C_3N_4和Bi OBr,g-C_3N_4-Bi OBr复合材料具有更强可见光吸收能力,吸收带边红移。在可见光辐照100 min后,性能最佳的2:8 gC_3N_4-Bi OBr复合光催化剂光催化活性分别是纯相g-C_3N_4和Bi OBr的1.8和1.2倍,经过4次循环实验后,其降解率仍达84%,说明复合结构光催化剂催化性能和稳定性增强。复合光催化剂的荧光强度显著降低,说明光生载流子复合得到了有效抑制。复合光催化剂催化性能的提高归因于p-n型异质结促进电荷有效分离、抑制电子-空穴复合和吸收光波长范围的扩展,相比单一成分材料具有更好的催化活性和稳定性。自由基捕获实验证明,可见光降解甲基橙光催化过程中的主要活性成分为空穴,并据此提出了可能的光催化机理。  相似文献   

18.
马占营 《分子催化》2016,30(6):575-582
采用共沉淀法制备了不同Ti/Bi摩尔比的TiO_2/Bi_2WO_6纳米异质结可见光光催化剂.采用XRD、HR-TEM、XPS及UV-vis DRS测试技术对样品的晶相结构、微观形貌、组成及吸光性能等进行了表征分析.以MB模拟环境污染物,考察了TiO_2/Bi_2WO_6纳米异质结的可见光光催化活性.结果表明,当热处理温度为700℃,n(Ti)∶n(Bi)的比值为1∶5.4,可见光照射180 min时,TiO_2/Bi_2WO_6纳米异质结对MB的降解率达80.0%,是纯Bi_2WO_6的12倍.光催化活性的提高可归因于TiO_2与Bi_2WO_6复合后可以产生能带交叠效应,从而促进光生电子-空穴对的有效分离.  相似文献   

19.
半导体光催化技术因其能够完全矿化和降解废水以及废气中的各种有机和无机污染物而受到越来越多研究者关注.尽管TiO2作为光催化剂显示了良好的应用前景,但其只对紫外光响应,该部分能量大约仅占太阳光谱的5%,从而限制了其实际应用.因此,开发新型可见光响应光催化剂成为光催化领域的研究焦点之一.石墨相氮化碳(g-C3N4)作为一种光催化材料,由于具有良好的热和化学稳定性以及可见光响应而备受关注.然而,单纯的g-C3N4由于光生电荷载流子易复合,光催化效果并不理想.为进一步提高g-C3N4的光催化活性,构建g-C3N4基异质结复合光催化材料被认为是增强g-C3N4光生电子-空穴分离效率的有效方法.CdMoO4作为一种光催化材料,与g-C3N4匹配的能带有利于光生电子-空穴的分离,从而提高g-C3N4的光催化活性.本文通过便利的原位沉淀-煅烧过程,制备了新颖的CdMoO4/g-C3N4异质复合光催化材料.复合材料的晶相构成、形貌、表面化学组分和光学特性等通过相应的分析测试手段进行表征.光催化活性通过可见光下催化降解罗丹明B水溶液来评价.结果显示,将CdMoO4沉积在g-C3N4表面形成复合材料可明显提高光催化活性,且当CdMoO4含量为4.8 wt%时达到最佳的光催化活性.这种显著增强的光催化活性可能是由于CdMoO4/g-C3N4复合物能够有效地传输和分离光生电荷载流子,从而抑制了光生电子-空穴的复合.电化学阻抗、瞬态光电流和稳定荧光光谱测试结果证实,通过CdMoO4与g-C3N4复合可有效增强电荷分离效率.此外,活性物捕获实验表明,在光催化过程中空穴(h+)和超氧自由基(?O2?)是主要活性物种.根据莫托-肖特基实验并结合紫外-可见漫反射吸收光谱,得到了单纯g-C3N4和CdMoO4的能带结构,提出了形成的II型异质结有助于增强光催化活性的机理.  相似文献   

20.
胡蕾 《分子催化》2013,27(4):377-384
首先以P123为模板剂利用溶胶-凝胶法制备TiO2载体,然后采用沉淀法制得介孔BiVO4/TiO2复合光催化剂.采用X射线衍射仪、漫反射吸收光谱仪、比表面分析仪对所制得的光催化剂进行了表征.结果表明,催化剂样品中的TiO2主要以锐钛矿型存在,BiVO4为四方相和单斜相共存的混晶,与单纯的BiVO4、TiO2光催化剂相比,BiVO4/TiO2复合光催化剂具有更高的可见光吸收性能、较好的比表面积和均一的介孔结构.腐殖酸的可见光降解试验表明,随着腐殖酸初始浓度的增大,其光降解率逐渐降低,ln(C/C0)对t呈线性关系.试验同步研究了腐殖酸光催化降解过程中荧光光谱、红外光谱和GC-MS谱图的变化情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号