首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H_2O_2作为一种高效绿色氧化剂,广泛应用于造纸、纺织、水处理等工业领域.目前蒽醌法是工业上生产H_2O_2的主要方法,相比之下,利用H_2和O_2直接合成H_2O_2,能耗低,污染小,适合与下游工艺技术进行耦合.而缺乏高性能催化剂是制约直接法合成H_2O_2工业化的主要原因.本文通过浸渍法制备了一系列负载型Pd-Sb/TiO_2双金属催化剂,并用于常压下H_2O_2直接催化合成反应.利用透射电子显微镜(TEM),X射线光电子能谱(XPS),H_2/O_2程序升温脱附(H_2/O_2-TPD),X射线衍射(XRD),原位CO吸附的傅里叶变换漫反射红外光谱(CO-DRIFTS)等手段对催化剂的电子和几何结构进行解析,深入研究了助剂Sb对该体系的促进作用.结果显示,与单金属Pd催化剂相比,适量金属Sb的加入有效提高了催化性能,抑制了副反应的发生.当Pd/Sb摩尔比为50/1(Pd50Sb)时,H_2O_2的选择性高达73%;但是当Pd/Sb为2时,催化剂对生成H_2O_2几乎没有活性.TEM和XRD证明,Sb的加入显著促进了Pd颗粒在载体TiO_2上的分散.XPS和H_2-TPD实验,发现,Sb改变了催化剂表面Pd~(2+)/Pd0的比例,抑制了金属Pd的氧化;同时,Sb主要以氧化态存在,在催化剂表面形成Sb_2O_3氧化层,覆盖表面的Pd活性位,从而抑制了反应中H_2在催化剂表面的活化以及H_2O_2加氢副反应的发生.O_2-TPD结果表明,随着Sb的加入,O_2的脱附峰明显减弱,表明Pd-Sb/TiO_2不利于O_2的解离吸附.此外,原位CO-DRIFTS实验结果表明,Sb均匀分布在Pd-Sb催化剂表面,致使有利于生成H_2O的连续Pd活性位明显减少,而有利于合成H_2O_2的单个Pd原子活性位明显增加.总的来说,Sb对Pd表面起到了显著的修饰作用,提高了催化剂表面O_2的非解离活化,从而促进了H_2O_2的高选择性合成.但是过量Sb的加入会抑制催化剂对H_2的活化作用,致使催化剂活性下降,因此优选Pd/Sb的比例对于提高催化剂性能具有重要作用  相似文献   

2.
商业选择性催化还原(SCR)催化剂成分主要有V_2O_5,WO_3和TiO_2,但适用温度窗口较窄(300-400℃),使得实际操作过程中活性较低.目前,过渡金属广泛应用于催化剂制备中以提高其催化活性.相比于纯TiO_2和ZrO_2载体,TiO_2-ZrO_2具有较高的热稳定性以及较多的酸位,虽然有关TiO_2-ZrO_2为载体的催化剂研究较多,但未与商业催化剂进行对比研究.而针对NH_3-SCR脱硝机理的实验研究也存在一些争议,主要原因归为以下两方面:(1)多数催化剂不同会直接导致催化剂的活性酸位不同;(2)不同NH_3-SCR脱硝催化剂的起活温度不同.同时,NH_3和NO在反应温度的吸附情况仍需要进一步研究.因此,有必要深入探究NH_3-SCR脱硝机理,以解决现行研究中存在的问题.本文首先采用共沉淀法制备摩尔比为1:1的TiO_2-ZrO_2固溶体,并分步浸渍不同质量比的WO_3和1%V_2O_5,最终得到一系列1%V_2O_5-x%WO_3/TiO_2-ZrO_2.然后通过X射线衍射(XRD)和比表面积测试(BET)、程序升温还原(TPR)、原位漫反射红外光谱(in situ DRIFTS)研究了WO_3和ZrO_2对催化性能的影响以及V_2O_5-WO_3/TiO_2-ZrO_2催化剂的反应机理.N2物理吸附结果表明,WO_3的添加使得催化剂孔结构的热稳定性有所提高,同时随着WO_3含量增加催化剂的比表面积逐渐减小,但仍高于V_2O_5/TiO_2-ZrO_2催化剂;ZrO_2对催化剂比表面积增大效果比较明显.结合XRD结果表明,WO_3能促进金属氧化物在载体上的分散;相比于V_2O_5-WO_3/TiO_2催化剂,ZrO_2有利于活性组分的分散负载.比较系列V_2O_5-x%WO_3/TiO_2-ZrO_2的氨吸附情况,发现WO_3的添加增加了Br?nsted酸的稳定性,其中以9%WO_3的效果最显著.催化剂氨吸附中间物种(–NH_2)的发现,证实了WO_3添加促进了NH_3的活化,有利于脱硝反应的进行.SCR反应结果显示,V_2O_5-9%WO_3/TiO_2-ZrO_2催化剂在300–450 ℃时NO_x转化效率最优,并发现O_2的存在促进了NO_x的转化.采用in situ DRIFTS研究了V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂脱硝机理,300和350 ℃时NH_3,NO,NO+O_2吸附情况表明,在真实的反应温度下,脱硝过程中的活性中心为Lewis酸中心,Br?nsted酸中心的NH4+极易从催化剂表面脱附,无法吸附在催化剂表面,且与NH_3相比,NO只能以NO_2的形式弱吸附在催化剂表面.因此,该催化剂遵循Eley-Ridel脱硝机理.而V_2O_5-9%WO_3/TiO_2-ZrO_2催化剂具有相对较高的脱硝效率,因此用来着重研究NH_3-SCR机理.在NH_3吸附过程中,NH_3(1204,1602,3156,3264,3347 cm~(-1))和活性中产物NH_2(1550 cm~(-1))在催化剂表面的吸附(恒温300 ℃)是稳定的;随后通入NO+O2时,NH_3吸附过程中的所有吸收峰(包括NH_2)均逐渐减小(NH_3吸附态与NO结合后分解为N_2和H_2O),同时出现H_2O的振动峰,这证明了V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂的脱硝反应过程.各类气体吸附情况表明,NO在商业催化剂的吸附状态与V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂相同;但NH_3吸附结果表明,Br?nsted酸中心和Lewis酸中心都是催化剂的活性中心;NO+O_2的通入使得催化剂表面的NH_3和NH~(4+)都逐渐消失.这两种催化剂脱硝反应过程差异主要在于催化剂表面活性中心的不同,导致了不同的NO_x脱除路径.通过in situ DRIFTS比较O_2的存在对脱硝反应产生的不同影响来确定O_2的作用.两类催化剂上O_2均参与了H_2O的形成,促进了催化反应的完成;当O_2不存在时,NO的还原受到了极大地抑制,同时也未出现H_2O;两者的脱硝效率大大降低.H_2-TPR和NH_3-TPR结果进一步证实O_2的作用主要是氧化NO及参与催化过程H_2O的形成.  相似文献   

3.
氮氧化物(NO_x)是主要的大气污染物之一.氨气选择性催化还原法(NH_3-SCR)是目前去除固定源排放的氮氧化物的最有效方法,被广泛用于燃煤或者生物质的火电厂中.催化剂是NH_3-SCR法的核心,其中V_2O_5-WO_3/TiO_2催化剂是主要的商业SCR催化剂;但是V_2O_5有毒,对环境的影响很大;另外,该催化剂具有较高的SO_2氧化性能.因而研究者一直在探索新型的SCR催化剂.SO_2是燃煤电厂烟气中的典型气体之一,所以抗硫性能是催化剂的一个重要指标.在SCR反应条件下,SO_2和O_2容易与氧化物催化剂发生反应生成稳定性较高的硫酸盐,覆盖在催化剂表面从而引起催化剂失活.但已有研究发现,硫化会提高K中毒后的V_2O_5-WO_3/TiO_2催化剂的活性.并且,短时间的硫化可以明显提高CuO/Al_2O_3的NH_3-SCR活性.硫酸盐催化剂或许具有较低毒性和较高抗硫性能,应该是一种有前景的SCR催化剂.本文以商业纳米TiO_2为载体,采用湿式浸渍法制备了一系列的CuSO_4/TiO_2催化剂.在自制的活性评价装置上测试了样品的NH_3-SCR活性并且在340℃下连续24 h测试了SO_2、水蒸气及两者共同作用对催化剂活性的影响.使用N_2等温吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、H_2程序升温还原(H2-TPR)和NH_3程序升温脱附(NH_3-TPD)对催化剂进行了表征.另外,采用原位红外漫反射光谱研究了CuSO_4/TiO_2催化剂上的NH_3-SCR反应过程.N_2等温吸附-脱附结果表明,负载的CuSO_4没有明显改变载体的孔结构.而XRD结果仅显示锐钛矿TiO_2的衍射峰,说明CuSO_4在载体上有较好的分散度或者CuSO_4的含量低于检测限.XPS结果显示,催化剂中的铜主要以Cu~(2+)形式存在,硫主要以SO_4~(2-)形式存在,而氧主要以晶格氧和吸附氧两种形式存在,并且CuSO_4的存在会增加催化剂中吸附氧的含量.H_2-TPR结果表明,随着CuSO_4含量的增加,催化剂的氧化还原能力逐渐增强.NH_3-TPD结果表明,催化剂表面的酸性位数目随着样品中CuSO_4含量的增加而增加.纯TiO_2的NH_3-SCR活性很差,当温度从300℃增加到450℃时,最高NO_x转化率仅为32.7%.但当CuSO_4负载到TiO_2上以后,催化剂活性明显提高.在反应温度高于340℃时,CuSO_4/TiO_2催化剂的NO_x转化率在94%以上,与商业V_2O_5-WO_3/TiO_2催化剂相当,并且其N_2O生成量低于商业催化剂.不过,当温度低于340℃时,CuSO_4/TiO_2催化剂的NO_x转化率明显低于商业催化剂,说明CuSO_4/TiO_2催化剂的活性仍有待改善.连续24 h测试了SO_2、水蒸汽及两者的共同作用对CuSO_4/TiO_2催化剂活性的影响.结果显示,单独的水蒸气会导致活性轻微下降,但SO_2以及两者共同存在时对催化剂的活性基本没有影响.CuSO_4/TiO_2催化剂的NH_3吸附红外光谱表明,催化剂上存在Lewis和Bronsted两种酸性位,但Bronsted酸性位上的NH_4~+稳定性较差,280℃时即基本消失.在高温时,NH_3主要吸附在Lewis酸性位上且CuSO_4/TiO_2催化剂对NO_x的吸附能力较差,红外光谱未检测到NO_x的吸附峰.380℃下,当NO和O_2通入预吸附NH_3的催化剂样品时,属于Lewis酸性位上NH_3的红外峰明显下降,说明Lewis酸性位上吸附的NH_3参与了反应.CuSO_4/TiO_2显示出高的抗硫抗水性能和比较好的NH_3-SCR活性,应该是一种有应用前景的SCR催化剂.CuSO_4可以增加催化剂的酸性位数目和吸附氧量.根据原位红外漫反射结果,CuSO_4/TiO_2上的SCR反应遵循Eley-Rideal机理.气相的NO与吸附在Lewis酸性位上的NH_3反应生成N_2和H_2O或许是主要的反应途径,并且吸附氧可能会促进这个过程.  相似文献   

4.
近年来,氨-选择催化还原(NH_3-SCR)技术被公认为是控制燃煤烟气和柴油车尾气氮氧化物(NO_x)排放的最有效手段之一.V_2O_5-WO_3/TiO_2和V_2O_5-MoO_3/TiO_2催化剂在300-400°C范围内表现出优异的脱硝性能和抗H_2O和SO_2中毒性能,因而被广泛用于NH_3-SCR过程.然而,钒基催化剂存在一些缺点,如氧化SO_2到SO_3的活性较高、高温下将部分NH_3非选择性地氧化成N_2O、V_2O_5具有生物毒性等.因此,非钒基脱硝催化剂的研制引起人们越来越多的关注.二氧化铈(CeO_2)因具有氧化还原性能优异、储/释氧能力强和Ce~(3+)/Ce~(4+)转换容易等优点而广泛用于NH_3-SCR反应.然而,单纯CeO_2的脱硝性能并不理想.研究表明,将CeO_2制备成铈基复合金属氧化物催化剂和负载型铈基催化剂可显著提高其在NH_3-SCR反应中的催化性能.尤其是负载型铈基催化剂由于催化性能优异、比表面积大、热稳定性高及活性组分用量少而成为研究热点.众所周知,对于负载型金属氧化物催化剂,载体并不只是惰性材料,它会显著影响表面负载组分的物理化学性质和催化性能.因此,关于载体与组分间相互作用的研究常见诸报道.但是,对于负载型铈基催化剂,具有不同晶相结构的载体对其理化性质和NH_3-SCR催化性能的影响规律尚不明晰.此外,SiO_2,γ-Al_2O_3,ZrO_2和TiO_2是工业上常用的四种催化剂载体,它们具有不同的晶相结构和应用场合,究竟哪一个最适合作为负载型铈基催化剂的载体用于NH_3-SCR反应尚无定论.因此,为了阐明负载型铈基催化剂在NH_3-SCR反应中的载体效应,筛选出最佳的催化剂载体,我们首先采用溶胶-凝胶法和沉淀法合成了SiO_2,γ-Al_2O_3,ZrO_2和TiO_2四个载体,再通过浸渍法制备了一系列负载型铈基催化剂(CeO_2/SiO_2,CeO_2/γ-Al_2O_3,CeO_2/ZrO_2和CeO_2/TiO_2)用于NH_3-SCR反应.并借助于X射线衍射(XRD)、拉曼光谱(Raman)、比表面积测定(BET)、X射线光电子能谱(XPS)、氢气-程序升温还原(H_2-TPR)以及氨气-程序升温脱附(NH_3-TPD)等表征手段对上述载体和催化剂进行了较为全面的分析.研究结果表明,这些负载型铈基催化剂的理化性质和脱硝性能强烈地依赖于催化剂载体.首先,CeO_2/γ-Al_2O_3催化剂的表面Ce3+含量明显大于CeO_2/SiO_2,CeO_2/ZrO_2和CeO_2/TiO_2催化剂,有利于氧空位的产生以促进NO分子的解离,进而导致优异的NH_3-SCR反应性能.其次,CeO_2/γ-Al_2O_3催化剂具有最佳的还原性能,有利于NO氧化为NO_2,进而通过"快速NH_3-SCR"途径提升其催化性能.再者,CeO_2/γ-Al_2O_3催化剂表面酸性位最多,能够促进反应物NH_3分子的吸附与活化,从而提高脱硝性能.最后,CeO_2/γ-Al_2O_3催化剂在H_2O和SO_2存在的条件下同样表现出最佳的催化性能,表明其有望用于实际燃煤烟气脱硝.  相似文献   

5.
氮氧化物(NO_x)是一种主要的大气污染物,采用氨选择性催化还原(NH_3-SCR)是实现NO_x排放控制的最有效手段。以V_2O_5/TiO_2为研究对象,通过引入CeO_2对其结构及表面性质进行改性,显著提高了V_2O_5/TiO_2催化剂的NH_3-SCR反应性能,其中1%(质量分数)V_2O_5/Ce_(0.1)Ti_(0.9)O_2催化剂在180~470℃内NO_x的转化率在80%以上,具有较宽的温度操作窗口和良好的抗硫稳定性。表征结果表明:CeO_2的引入可抑制TiO_2晶体的长大,产生更多的结构畸变,并显著增大催化剂的比表面积。V和Ce物种之间的相互作用促进了催化剂表面V~(5+)物种的形成,增强了催化剂对NO的吸附和氧化能力,并提供较多的弱和中等强度的酸性位,导致其低温SCR反应性能的显著升高;但同时表面强酸中心数量的减少以及NH_3非选择性氧化能力的升高,使其高温区SCR的活性明显降低。  相似文献   

6.
氮氧化物(NO_x)是当今大气环境中的主要污染物之一,氨法选择性催化脱硝技术(NH_3-SCR)是最有前景的烟气脱硝技术之一.在众多的NH_3-SCR催化剂中,钛基催化剂由于其较好的热稳定性、抗硫性和环境友好性成为近年来研究的热点.本文以SO_4~(2-).离子作为晶面导向剂,采用一步水热法合成了具有(001)高能晶面的SO_4~(2-).-TiO_2,负载氧化铈后用于SCR反应,并以Ce/P25和Ce/P25-S(浸渍法硫酸化)作为参照对比.研究发现,Ce/TiO_2-001更适合于中、高温NH_3-SCR反应,在290 oC时NO转化率已达99%,并且在290–480 oC范围内均保持99%的脱硝效率.利用X射线衍射、N2吸附脱附、透射电子显微镜、X射线光电子能谱(XPS)、NH3/O2程序升温脱附(TPD)、傅里叶原位红外光谱等技术研究了上述催化剂的表面物化性质与脱硝性能的关系.相比于Ce/P25和Ce/P25-S,Ce/TiO_2-001具有更高的比表面积(107 m~2/g),形成了介孔TiO_2单晶,且晶粒尺寸更小.XPS和NH3-TPD结果表明,Ce/TiO_2-001表面具有丰富的酸性位.硫酸化可以增加催化剂表面的Brosted/Lewis酸性位;同时,(001)高能晶面有利于水分子的解离,从而促进酸性位的产生.O_2-TPD表明,Ce/TiO_2-001催化剂表面存在大量化学吸附氧,这与其一步合成中的硫酸化和(001)高能晶面密切相关,而化学吸附氧在中高温SCR反应中起着重要的作用.通过原位红外分析可得,不同催化剂表面所形成的NO_x吸附物种有所差异,在30°C时,Ce/P25的NO_x吸附物种比较丰富,存在气相NO2、双齿硝酸盐、线性硝酸盐、单齿硝酸盐和桥式硝酸盐,而Ce/P25-S和Ce/TiO_2-001上的NO_x吸附物种则以单齿硝酸盐/亚硝酸盐为主.随着温度的升高,以上催化剂表面的NO_x吸附物种逐渐变为以气相NO2和双齿硝酸盐为主.但同种NO_x吸附物种(气相NO2、双齿硝酸盐)在不同催化剂上的反应活性也有所不同,在250°C时,其顺序为:Ce/TiO_2-001Ce/P25-SCe/P25,与脱硝性能相符.由此可推测,催化剂表面硫酸化和(001)高能晶面的存在有利于提高NO_x中间产物的反应活性,增加反应速率,从而提高脱硝性能.综上所述,硫酸化、高比表面积和(001)高能晶面是Ce/TiO_2-001具有很好脱硝活性的重要原因.硫酸化可以提供丰富的酸性位,增强氨的吸附性能;高比表面积不仅可以负载更多的活性组分,而且有利于活性组分的均匀分散,对降低活性中心的尺寸、防止活性组分烧结团聚有积极作用.而(001)高能晶面则可以促进中、强酸和化学吸附氧的形成,活化NO_x吸附物种,从而提高SCR催化活性  相似文献   

7.
选择性催化还原(SCR)是目前去除氮氧化物最有效的方法之一.V_2O_5/TiO_2催化剂被广泛应用于氨法选择性还原氮氧化物(NH_3-SCR)反应,但该催化剂存在工作温度高(300–400℃)及SO_2氧化率高引起设备腐蚀和管路堵塞等问题,开发低温SCR催化剂具有重要意义.过渡金属氧化物(如Fe_2O_3,MnO_x和CuO等)催化剂用于低温SCR先后见诸文献报道,但这些催化剂在SO_2和H_2O存在下易失活.近年来柱撑黏土(PILC)引起科学家广泛关注,Yang等首次将V_2O_5/TiO_2-PILC催化剂应用于NH_3-SCR反应,发现其催化活性高于传统V_2O_5/TiO_2催化剂.柱撑黏土基催化剂在NH_3-SCR反应中也显示出良好抗硫性能,但V_2O_5/TiO_2-PILC催化剂的抗硫机理至今尚未见深入研究.因此我们制备了一系列V_2O_5/TiO_2-PILC催化剂,采用原位漫反射红外等方法详细研究了其抗硫性能较好的原因.首先采用离子交换法制备出TiO_2-PILC载体,之后采用浸渍法制备了不同钒含量(质量分数x/%=0,3,4,5)的xV_2O_5/TiO_2-PILC催化剂.同时,制备了传统V_2O_5/TiO_2和V2O5-MoO_3/TiO_2催化剂作为对比.活性评价结果显示,4V/TiO_2-PILC催化剂具有最高的催化活性,其催化性能与传统钒钛催化剂相当.在160℃时,NO转化率可达80%以上.同时,4V/TiO_2-PILC催化剂还具有较宽的反应温度窗口,在260–500℃范围内,NO转化率保持在90%以上.向反应体系中加入0.05%SO_2和10%H_2O后,在低温(160℃以下)时所有催化剂的反应活性都有一定提高,可能是由于SO_2的加入提高了催化剂的表面酸性.继续升高温度,4V/TiO_2和4V6Mo/TiO_2催化剂活性均明显下降,而4V/TiO_2-PILC催化剂的活性则未出现明显下降.原位漫反射红外光谱结果显示,SO_2在三种催化剂表面的吸附以表面硫酸盐或亚硫酸盐物种以及离子态SO_4~(2–)物种形式存在,而在4V/TiO_2-PILC催化剂表面离子态SO_4~(2–)物种的量最少.X射线光电子能谱及O_2程序升温脱附结果显示,在4V/TiO_2-PILC催化剂上,表面吸附氧(Oads)的量最少.综合上述分析可以得出,在SO_2气氛下,离子态SO_4~(2–)物种在SCR催化剂表面的累积可能是导致其失活的主要原因,而离子态SO_4~(2–)物种的形成可能与催化剂表面吸附氧的量有关.  相似文献   

8.
以H_2S为毒物,用浸渍法制备了一系列不同载体的钯催化剂(Pd/Al_2O_3、Pd/MgO和Pd/TiO_2)以Na_2S与催化剂机械混合的方式,在载体上引入S~(2-),用H_2—O_2混合气对含硫的催化剂进行处理。藉XPS和IR谱对不同载体的催化剂上硫的吸附及转化进行了研究。结果表明,载体酸碱性对其上担载的贵金属的电子状态有一定的影响。酸性较强的载体对贵金属的分散作用较强,H_2S在这种载体的催化剂上的吸附和转化能力较差。在碱性较强的载体的催化剂上,结果相反。此外,载体上晶格氧的活性不同,对H_2S的转化能力也有差异。在Pd/Al_2O_3催化剂运行过程中,H_2S在A1_2O_3载体上主要发现为一种物理的吸附-脱附过程;而在MgO和TiO_2载体上,不仅存在H_2S的吸附过程,且有H_2S转化为SO_2或SO_4~(2-)的过程。结果还表明,载体性质对催化剂的自身再生能力具有较大影响。  相似文献   

9.
利用模板剂-浸渍法制备出了不同焙烧温度下的多孔复合材料TiO_2-Al_2O_3和Pd/Al_2O_3-TiO_2催化剂来催化氧化乙醇.样品经过XRD,FT-IR,孔结构分析、TEM、XPS、脉冲吸附、NH_3-TPD等进行表征分析.250℃焙烧的Pd/TiO_2-Al_2O_3催化剂具有最高的乙醇转化率和CO_2生成率.高比表面积、均匀分散的金属Pd颗粒和丰富的表面吸附氧是其具有高的催化活性的主要原因.  相似文献   

10.
近年来, NO_x的排放造成了严重的环境污染.氨选择性催化还原技术(NH3-SCR)是目前消除NO_x最有效的手段之一.V_2O_5-WO_3/TiO_2催化剂在300–400°C范围内表现出优异的脱硝性能,因此被广泛用于NH3-SCR反应.然而该催化剂抗碱(土)金属中毒性能较差,且碱(土)金属碱性越强对催化剂的毒害越大(即K Na Ca Mg).已有研究显示,当K_2O质量分数达1%时,催化剂将完全失活,所以对传统的V_2O_5-WO_3/TiO_2催化剂进行改性以提高其抗K中毒性能具有十分重要的意义.最近, CeO_2由于具有优异的氧化还原性能和储/释氧能力,在NH3-SCR反应得到了广泛的关注.研究显示, CeO_2的改性可提高钒基催化剂脱硝活性及抗碱金属中毒性能,这主要是由于CeO_2的掺杂可以有效提高催化剂表面酸性及氧化还原能力. ZrO_2是一种酸碱两性氧化物,常被用作载体或者助剂.研究显示, ZrO_2的引入可以提高催化剂热稳定性,增大比表面积以及提高氧迁移能力.基于此,我们制备了一系列的V_2O_5-WO_3/TiO_2-ZrO_2, V_2O_5-WO_3/TiO_2-CeO_2以及V_2O_5-WO_3/TiO_2-CeO_2-ZrO_2催化剂,以期提高V_2O_5-WO_3/TiO_2催化剂脱硝性能及抗K中毒能力.研究发现, Ce~(4+), Zr~(4+)共掺杂可以有效提高V_2O_5-WO_3/TiO_2催化活性,拓宽反应温度窗口,增强抗K中毒能力.进一步借助X射线衍射、比表面积测定、氨气-程序升温脱附、氢气-程序升温还原和X射线光电子能谱等表征对催化剂进行全面分析.结果显示, Ce~(4+), Zr~(4+)共掺杂对V_2O_5-WO_3/TiO_2催化剂物理化学性质的影响与其脱硝性能及抗K中毒能力有着密不可分的关系.首先, Ce~(4+), Zr~(4+)可以掺杂进入TiO_2晶格,抑制TiO_2晶粒的生长,从而导致比表面积以及总孔体积的增加;比表面积的增加有利于活性物种的分散,而总孔体积的增加有利于反应物分子与催化剂充分接触.其次, Ce~(4+), Zr~(4+)共掺杂可以提高催化剂表面酸性和氧化还原性能,表面酸性的增加有利于催化剂吸附与活化反应物种NH_3,氧化还原性能的提高有利于NO氧化为NO_2,进而通过"快速NH3-SCR"反应提高催化剂活性;同时, Ce~(4+), Zr~(4+)共掺杂还可以有效降低K中毒对表面酸性和氧化还原性能的影响,这主要是由于Ce~(4+)可以与K原子结合形成Ce-O-K物种,而Zr~(4+)的引入可以增加Ce~(4+)的热稳定性,使得更多的Ce~(4+)与K结合,避免了K与活性钒物种结合形成V-O-K物种,使得活性V5+得到了有效的保护.原位红外实验揭示了V_2O_5-WO_3/TiO_2-CeO_2-ZrO_2催化反应遵循L-H机理,且K中毒并未改变其反应机理.最后,该催化剂在H_2O和SO_2存在的条件下仍具有最佳的脱硝性能,因而有望用于实际高K含量的燃煤烟气脱硝.  相似文献   

11.
采用水热法合成了含有89%{101}晶面的TiO_2纳米锭(TiO_2-101)和77%{001}晶面的TiO_2纳米片(TiO_2-001),将其用作载体来制备担载钯催化剂;研究了上述制备的TiO_2纳米材料对Pd/TiO_2-101和Pd/TiO_2-001催化剂用于乙炔选择加氢制聚合级乙烯催化性能的影响。结果表明,Pd/TiO_2-101催化剂表现出更好的乙炔转化率和乙烯收率。通过氢气程序升温脱附(H_2-TPD)、氢气程序升温还原(H_2-TPR)、透射电子显微镜(TEM)、CO化学吸附、X射线光电子能谱(XPS)和热重分析仪(TGA)等对催化剂进行了结构表征和分析。TEM和CO化学吸附结果表明,Pd纳米颗粒(NPs)在TiO_2-101载体上有较小的颗粒尺寸(1.53 nm)和较高的分散度(15.95%);而Pd纳米颗粒在TiO_2-001载体上的颗粒尺寸是4.36 nm和9.06%的分散度。Pd/TiO_2-101催化剂上较小的Pd颗粒尺寸及其较高的分散度使催化剂具有更多的反应活性位点,这促进了其反应的催化活性。  相似文献   

12.
汽车尾气中主要污染成分CO和NO_x可导致酸雨、光化学烟雾和臭氧空洞效应,对生物、环境及生态系统造成重大危害.污染源中CO是性能优良的还原剂,如能不添加还原剂实现CO催化还原NO_x,将成为最具经济技术优势的NO_x脱除技术.在富氧、低温条件下,利用CO选择性催化还原NO_x为N_2,是目前选择性催化还原研究中的热点和难点.催化CO还原NO_x常用的贵金属Ir,Rh,Pt和Pd矿藏稀少,价格昂贵,有氧条件下活性急降,而分子筛催化剂和一些金属氧化物催化剂普遍存在反应温度高,尤其对N_2选择性差等问题.为解决上述问题,需寻找新的适合我国矿产资源的催化体系.研究发现,稀散金属基催化剂对氮氧化物的净化具有一定效果,因而可将我国的稀散金属资源优势转化为技术优势和经济优势.因此,本文以TiO_2-γ-Al_2O_3(TA)为载体,In/Ag为活性组分,采用等体积浸渍法制备了InAg/TA以及In/TA,Ag/TA和InAg/Al(γ-Al_2O_3为载体)催化剂,考察了贫燃条件下CO选择性还原NO的催化活性.研究表明,双金属催化剂InAg/Al和InAg/TA的活性比单金属催化剂In/TA和Ag/TA高,In/TA催化剂中引入Ag物种能降低起燃温度;另外,相比于InAg/Al催化剂,InAg/TA催化剂具有较高的催化活性,550-600°C时N_2产率超过60%,说明载体中引入TiO_2可以提高催化剂活性.为了深入研究InAg/TA催化剂中Ag物种和TiO_2对In物种的作用,通过比表面测定、X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱、紫外-可见光吸收光谱、氢气程序升温还原、傅立叶变换红外线光谱等方法分析了催化剂结构和表面形态.结果表明,Ag物种可以提高In物种的分散性,In和Ag物种在TA载体表面可以很好地分散,从而有利于提高催化活性.In和Ag物种在TA载体表面以氧化态形式存在,并且Ag物种可以提高In物种表面含量,表面In和Ag物种含量越高,吸附活性位越多,催化活性越高;同时,TiO_2也可以促进NO吸附,从而提高InAg/TA催化剂活性.InAg/TA催化剂在450°C连续反应72 h进行稳定性测试,测试前后分别在50-600°C进行活性测试,并用XRD和TEM对反应后的催化剂进行表征测试.结果表明,InAg/TA催化剂具有较好的稳定性,连续反应前后催化剂活性基本保持不变,推测可能由于在有CO和O_2存在的体系中,Ag物种利用自身Ag~+与Ag~0之间的氧化还原反应抑制了活性组分In_2O_3的还原和聚集,稳定了In物种乃至催化剂活性.InAg/TA催化剂用于贫燃条件下CO还原NO具有较好的催化效果,主要归因于催化剂活性组分分散性好,稳定性高,对NO吸附能力强.Ag物种可以稳定In物种并提高其分散性,TiO_2可以改善In物种和Ag物种的分散性并促进NO吸附.  相似文献   

13.
采用沉淀法制备了Fe(OH)_3和Fe_2O_3。通过硫酸化处理得到SO_4~(2-)/Fe(OH)_3和SO_4~(2-)/Fe_2O_3两种催化剂,并将其应用于氨选择性催化还原NO_x(NH_3-SCR)反应,研究了SO_4~(2-)功能化处理对Fe_2O_3催化剂上NH_3-SCR脱硝性能的促进机理。结果表明,与纯的Fe_2O_3相比,硫酸化处理得到的催化剂上SCR活性得到显著提升;其中,SO_4~(2-)/Fe(OH)_3表现出更加优异的催化性能,在250-450℃时NO_x转化率高于80%,且具有优异的稳定性和抗H_2O+SO_2性能。XRD、Raman、TG、FT-IR、H_2-TPR、NH_3-TPD和in situ DRIFTS等表征结果显示,硫酸功能化处理能抑制Fe_2O_3的晶粒生长,同时SO_4~(2-)与Fe~(3+)结合形成硫酸盐复合物,提高了催化剂表面酸性位点的数量和酸强度,抑制了Fe_2O_3上的氨氧化反应,从而提高了其脱硝催化性能。  相似文献   

14.
氮氧化物NO_x(NO和NO_2)对大气的污染日益严重,主要表现为形成酸雨、导致光化学烟雾和产生温室效应等,严重危害人类健康.氨气选择性催化还原(NH_3-SCR)NO_x是目前最有效的固定源NO_x消除技术.工业中常用的催化剂主要是V_2O_5-WO_3/TiO_2,但其活性组分V_2O_5有毒,且存在氧化能力较强和操作温度窗口过窄等缺点.开发新型环境友好的非钒基NH_3-SCR催化剂体系己成为NO_x催化净化领域的研究热点.CeO_2在稀土市场中占有很大比重且相对廉价,同时还具有优异的氧化-还原及储氧性能,因此开发Ce基SCR脱硝催化剂具有非常好的发展前景.对于NH_3-SCR反应,催化剂必须同时具有酸性位和氧化还原中心.酸性位有利于还原剂NH_3的吸附与活化,而氧化还原中心可以促使氧化剂和还原剂之间发生反应.对于低温SCR催化剂,表面酸性适中即可,氧化还原性能起决定作用;而对于中高温SCR催化剂,不仅要提高其表面酸性以保证足够的NH_3吸附量,同时还要控制其表面氧化性不宜太强,否则在高温段NH_3氧化,N_2选择性下降,NO转化率降低.CeO_2具有一定碱性以及优异的氧化还原性能,因此在高温阶段CeO_2催化剂上易发生NH_3深度氧化,高温NH_3-SCR活性差,温度窗口窄.为了拓宽CeO_2基催化剂的温度窗口,改善其催化性能,有必要调整CeO_2的氧化还原性能和酸碱性能.过渡金属磷酸盐或焦磷酸盐具有特殊的表面酸性和氧化还原性,被广泛应用于多种催化反应.考虑到过渡金属磷酸盐或焦磷酸盐表面同时具有酸性位和氧化还原中心,因而可用于NH_3-SCR反应.最近本课题组通过水热法制备了一种环境友好的Ce-P-O催化剂,该催化剂在较宽的温度范围(300-550℃)内表现出较高的催化NO转化能力,同时具有较强的抗碱和耐硫能力,显示出很好的应用前景.此外,硫酸盐和镍盐修饰能有效改善铈锆固溶体催化剂的NH_3-SCR性能:镍修饰增强了铈锆固溶体的Lewis酸性,有利于提高催化剂的低温活性,而硫酸盐改性提高了催化剂的Bronsted酸性,因此有利于催化剂高温下吸附NH_3,抑制了NH_3的过度氧化.另外,磷酸盐修饰能提高铈锆固溶体催化剂NH_3-SCR反应活性.然而,有关催化剂结构系统表征鲜见报道,催化剂的构效关系阐述不够详细.本文采用浸渍法将不同量的H_3PO_4负载于CeO_2上制备了H_3PO_4修饰的CeO_2催化剂,发现H_3PO_4修饰能显著改善CeO_2催化剂的NH_3-SCR性能.本文对催化剂结构进行了系统表征,详细探讨了H_3PO_4促进作用的原因.NH_3-SCR活性测试显示,H_3PO_4修饰后,催化剂活性显著提高,部分抑制了高温时CeO_2催化剂上NH_3的直接氧化,提高了SCR反应的选择性,从而拓宽了温度窗口.X射线衍射、红外光谱和拉曼光谱表征结果发现,随着H_3PO_4负载量增加,样品中CeO_2相逐渐减少,而新相如CeP_2O_7和Ce(PO_3)_4等逐渐增多,多磷酸根阴离子可能是表面酸性增强的关键因素.NH_3程序升温脱附和吸附吡啶红外光谱结果表明,随着H_3PO_4修饰量的增加,样品的酸强度逐渐增大,Lewis酸性逐渐减弱至消失,而Bronsted酸性逐渐增强.增强的Bronsted酸性可能归因于H_3PO_4修饰后样品表面不断增加的P-OH基团.相对于Lewis酸,Bronsted酸性位氧化能力更弱,可以抑制高温下NH_2(ads)继续脱氢,避免了NH_3深度氧化.程序升温还原测试结果表明,H_3PO_4修饰后,各还原峰向高温偏移,偏移量随H_3PO_4负载量增加而增加.这说明H_3PO_4修饰后CeO_2的氧化还原能力降低,抑制了高温下NH_3的过度氧化.因此,H_3PO_4的修饰使得CeO_2催化剂高温NH_3-SCR活性和N_2选择性大幅提高.综上所述,H_3PO_4-CeO_2样品优异的脱硝催化活性可能归因于H_3PO_4修饰后催化剂酸性,尤其是Bronsted酸性的增强以及氧化还原性的降低.  相似文献   

15.
以不同温度焙烧TiO(OH)_2得到的TiO_2为载体,采用湿法浸渍法制备RuO_2/TiO_2-C(C=450、550、650及750℃)催化剂,利用XRD、N_2吸附-脱附、TEM和H_2-TPR等表征手段研究催化剂的物理化学性质,并对其在HCl氧化反应中的催化性能进行考察.结果表明:载体焙烧温度对催化剂的结构与活性有显著影响.随着载体焙烧温度(≤650℃)的升高,RuO_2与TiO_2之间的晶面匹配度逐渐变高,促进了RuO_2在TiO_2表面的分散,其中RuO_2/TiO_2-650催化剂表现出最优的催化性能.而当载体焙烧温度过高时,RuO_2/TiO_2-750催化剂的反应活性大大下降,可能是由于过高的焙烧温度导致载体出现严重的烧结团聚现象,以及RuO_2与TiO_2之间过强的相互作用,阻碍了HCl氧化反应的进行.此外,减小RuO_2的粒径可以促进HCl氧化活性的提升.动力学结果显示,催化剂表面的HCl氧化反应主要受O_2分压的影响,表明O_2从催化剂表面的解离吸附为决速步骤.  相似文献   

16.
甲烷作为一种清洁廉价的碳氢能源,广泛应用于运输业和其它工业领域.但是其本身是一种比二氧化碳导致全球变暖效应更强的温室气体,而且甲烷直接燃烧会产生其它污染物,比如一氧化碳、氮氧化物、未充分燃烧的碳氢化合物等.因此有必要开展有关甲烷催化燃烧的研究工作,以大幅度降低起燃温度,提高燃烧效率,有效地减少污染副产物的产生.由于具有较好的低温催化活性,Pd基催化剂常用于甲烷的催化燃烧.但是Pd基催化剂也存在一些亟需解决的问题,比如在催化燃烧过程中活性相结构不稳定.PdO通常被认为是碳氢化合物催化氧化中的活性相,但是在高温下PdO分解为Pd,导致催化活性下降.PdO遇到含水或硫的化合物时会生成惰性的Pd(OH)_2或稳定的硫化物,造成活性物种的流失,从而降低催化剂的性能.如果在材料中添加另一种贵金属Pt,使之与Pd一起形成贵金属合金,则可提高其低温催化燃烧的活性,增加Pd基催化剂的热稳定性以及抗水和抗硫能力.另一方面,过渡金属氧化物价格便宜,热稳定性以及抗硫性较好,也常作为甲烷燃烧的催化剂.其中三氧化二锰由于具有可变的氧化态以及较好的储氧能力受到了广泛关注.本课题组采用KIT-6作为硬模板,先合成具有有序介孔结构的Mn_2O_3(meso-Mn_2O_3)纳米催化剂,然后通过聚乙烯醇(PVA)保护的液相共还原法分别制备meso-Mn_2O_3担载Pd,Pt及PdPt合金的纳米催化剂(x(Pd_yPt)/meso-Mn_2O_3;x=(0.10-1.50)wt%;Pd/Pt摩尔比(y)=4.9-5.1).XRD结果表明,合成的meso-Mn_2O_3具有立方相晶体结构.其BET比表面积为106 m~2/g.由TEM照片可观察到粒径范围为2.1-2.8 nm的贵金属纳米颗粒均匀分散在meso-Mn_2O_3表面.通过XPS分析可知,结合能在529.6和531.2 eV的峰可分别归属于晶格氧(O_(latt))和表面吸附氧(O_(ads)).Pd~0和Pd~(2+)以及Pt~0和Pt~(2+)也均可通过曲线拟合后进行分峰确定.XPS定量分析结果表明,样品的O_(ads)/O_(latt)摩尔比有如下顺序:1.41(Pd_(5.1)Pt)/meso-Mn_2O_3(0.77)1.40Pd/meso-Mn_2O_3(0.69)0.72(Pd_(5.1)Pt)/meso-Mn_2O_3(0.65)1.42Pt/meso-Mn_2O_3(0.63)0.07(Pd4.9Pt)/meso-Mn_2O_3(0.53)0.07(Pd_(4.9)Pt)/bulk-Mn_2O_3(0.52)meso-Mn_2O_3(0.45),这与其催化活性的顺序一相致.该结果表明,高的吸附氧物种浓度有利于甲烷催化燃烧.负载Pd,Pt或Pd Pt以后的样品的表面吸附氧物种浓度显著提高,催化活性最好的1.41(Pd_(5.1)Pt)/meso-Mn_2O_3样品具有最高的吸附氧物种浓度.负载PdPt合金可有效提高催化剂对甲烷燃烧的催化活性.1.41(Pd_(5.1)Pt)/meso-Mn_2O_3催化剂的活性最好:在空速为20000 mL/(g×h)的条件下,甲烷燃烧的T_(10%),T_(50%)和T_(90%)分别为265,345和425 ℃.此外,还考察了引入一定量的SO_2,CO_2,H_2O和NO对甲烷在1.41(Pd_(5.1)Pt)/meso-Mn_2O_3催化剂上氧化反应的影响,发现引入少量的Pt可提高催化剂抗SO_2,CO_2和H_2O的能力,但是NO对甲烷燃烧的还原效应也不可忽视.基于催化剂物化性质的表征结果和活性数据,我们认为1.41(Pd_(5.1)Pt)/meso-Mn_2O_3优异的催化性能与其拥有高质量的三维有序多孔结构、高的吸附氧物种浓度、优良的低温还原性以及Pd-Pt合金与meso-Mn_2O_3载体之间的强相互作用有关.  相似文献   

17.
氨选择性催化还原NO_x技术可以有效控制氮氧化物的排放。V_2O_5-WO_3(MoO_3)/TiO_2脱硝催化剂虽然已经工业化应用,但其工作温度偏高,不能满足低温宽工作温度窗口等工况的需要。因此,开发具有宽工作温度窗口的低温脱硝催化剂成为研究热点。其中,铁基催化剂因其具有良好的氧化还原性,以及储量丰富、价格低廉、无毒无害等特点,使其在低温氨选择性催化还原(NH_3-SCR)反应中得到了广泛研究。基于Fe_2O_3在NH_3-SCR催化体系中所起的作用不同,从Fe_2O_3作为载体、助剂、活性组分以及新型结构的铁基催化剂等方面系统地介绍了近年来铁基催化剂在NH_3-SCR反应中的最新研究进展。此外,还总结了铁基催化剂的NH_3-SCR反应机理以及抗水抗硫性,并对该领域未来可能的发展方向进行了展望。  相似文献   

18.
利用纳米γ-Al_2O_3(10 nm)和普通γ-Al_2O_3(200-300 nm),采用浸渍法制备了1%(w)Pd/γ-Al_2O_3催化剂,考察了其催化氧化邻-二甲苯的性能以及催化剂的活性在氢气还原前后的区别。实验结果发现1%(w)Pd/γ-Al_2O_3(nano)在H_2还原后催化氧化邻-二甲苯的活性最高,T_(90)为150℃。利用X射线衍射(XRD)、比表面积(BET)、透射电镜(TEM)、X射线光电子能谱(XPS)等表征手段,研究了1%(w)Pd/γ-Al_2O_3催化剂物性结构与催化性能之间的构效关系。结果表明,还原态Pd是H_2还原后催化剂催化氧化邻-二甲苯的活性物种;Pd的颗粒大小与催化剂活性有显著的关系,小粒径有利于催化剂活性提高;纳米γ-Al_2O_3载体与Pd之间的相互作用强,有利于Pd的粒径控制和分散,从而提高1%(w)Pd/γ-Al_2O_3(nano)催化剂的活性。  相似文献   

19.
 首次研究了 Pd 基催化剂上氢快速选择催化还原 NOx 反应 (快速 H2-SCR 反应). 结果表明, Pd/Al2O3 和 Pd/SiO2 催化剂表现出极高的活性, 在 200 oC 以上时 NOx 转化率可达 100%; 但 Pd/MgO 催化剂在整个考察温度范围均没有活性, 这表明载体对催化剂快速 H2-SCR 活性有决定性作用. 与常规 H2-SCR 反应相比, 快速 H2-SCR 反应明显提高了 NOx 的消除效率. 原位漫反射红外光谱结果表明, 快速 H2-SCR 反应活性的提高来源于加速生成的氨物种以及后续反应速率的加快.  相似文献   

20.
采用浸渍法(IM)和沉积沉淀法(DP)制备了CeO2改性的Pd/Al2O3催化剂,以噻吩加氢脱硫为探针反应,在连续流动反应条件下考察了催化剂的活性和抗硫性能,并运用XRD、H2吸附、NH3-TPD、FT-IR、XPS等手段对催化剂进行了表征.结果表明,与Pd/Al2O3催化剂相比,浸渍法制备的Pd-CeO2/Al2O3催化剂具有较高的活性,而沉积沉淀法制备的Pd-CeO2/Al2O3催化剂活性却降低.在Pd-CeO2/Al2O3催化剂中Cl-1与Pd、Ce3 发生作用形成Pd-Cl-1-Ce3 界面结构,这是催化剂活性提高的原因,同时Cl-1也削弱了Pd-Ce的结合作用,Pd-CeO2/Al2O3(IM)催化剂抗硫能力的提高是由于Ce3 对H2S的竞争吸附削弱了Pd-S键.而Pd-CeO2/Al2O3(DP)催化剂则是由于Pd-Ce的结合作用使Pd处于正电状态,避免了Pd-S的生成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号