首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel characteristics of magnetic field and entropy generation in mixed convective flow of Carreau fluid towards a stretched surface are investigated.Buongiornio nanoliquid model consists of thermophoresis and Brownian movement aspects is opted for analysis.Energy expression is modeled subject to thermal radiation and viscous dissipation phenomenon.Concentration by zero mass flux condition is implemented.Consideration of chemical reaction and activation energy characterizes the mass transfer mechanism.Total entropy generation rate and Bejan number is formulated.The utilization of transformation variables reduces the PDEs into non-linear ODEs.The obtained nonlinear complex problems are computed numerically through Shooting scheme.The impact of involved variables like local Weissenberg number,magnetic parameter,thermal radiation parameter,Brownian motion parameter,thermophoresis parameter,buoyancy ratio parameter,mixed convection parameter,Prandtl parameter,Eckert number,Schmidt number,non-dimensional activation energy parameter,chemical reaction parameter,Brinkman number,dimensionless concentration ratio variable,diffusive variable and dimensionless temperature ratio variable on velocity,temperature,nanoparticles concentration,entropy generation,Bejan number,surface drag force and heat transfer rate are examined through graphs and tables.  相似文献   

2.
The aim of this research is to analyze the effects of mass transfer on second grade fluid flow subjected to the heat transfer incorporated with the relaxation time to reach the state of equilibrium on or after the state of upheaval. A new heat model namely Cattaneo–Christov heat flux comprising the relaxation time is employed instead of very commonly used mundane model based on classical theory of heat flux. Flow is considered towards stretching cylinder in the existence of external magnetic field. Suitable transformations are first used to deduce the momentum, heat and concentration equations and are then solved analytically. The effects of physical quantities such as fluid parameter, magnetic field, Schmidt number, relaxation time, curvature parameter, Prandtl number and chemical reaction on momentum, temperature and concentration profile are examined graphically whereas for validation of results convergence analysis along with residual error are obtained numerically. A comparison of obtained results is also given with the existing literature as a limiting case of reported problem and are found an excellent agreement. The temperature profile indicates thinning effect for higher values of Prandtl number and relaxation time. It is also noted that the velocity increases with increasing values of fluid parameter whereas it declines for the case of magnetic field. This study can be used an application of central heating system and to measure the fast chemical reactions rates.  相似文献   

3.
The phenomena of heat and mass transfer during the flow of non-Newtonian transfer are amongst the core subjects in mechanical sciences. Recently, the nanomaterials are among the eminent tools for improving the low thermal conductivity of working fluids. Therefore, in view of the existing contributions, this article presents a two-dimensional numerical simulation for the transient flow of a non-Newtonian nanofluid generated by an expanding/contracting circular cylinder. This critical review further explores the impacts of variable magnetic field, thermal radiation, velocity slip and convective boundary conditions. The basic governing equations for Williamson fluid flow are formulated with the assistance of boundary layer approximations. The non-dimensional form of partially coupled ordinary differential equations has been tackled numerically by utilizing versatile Runge–Kutta integration scheme. The momentum, thermal and concentration characteristics are investigated with respect to several critical parameters, like, Weissenberg number, unsteadiness parameter, viscosity ratio parameter, slip parameter, suction parameter, magnetic parameter, thermophoresis parameter, Brownian motion parameter, Prandtl number, Lewis number and Biot number. The outcomes of the systematic reviews of these parameters and forest plots are illustrated. The study reveals that multiple solutions for the considered problem occurs for diverse values of involved physical parameters. The computed results indicate that the friction and heat transfer coefficients are significantly raised by the magnetic parameter for upper branch solutions.  相似文献   

4.
This article presents an investigation of heat transfer in a porous medium adjacent to a vertical plate. The porous medium is subjected to a magnetohydrodynamic effect and suction velocity. The governing equations are nondepersonalized and converted into ordinary differential equations. The resulting equations are solved with the help of the finite difference method. The impact of various parameters, such as the Prandtl number, Grashof number, permeability parameter, radiation parameter, Eckert number, viscous dissipation parameter, and magnetic parameter, on fluid flow characteristics inside the porous medium is discussed. Entropy generation in the medium is analyzed with respect to various parameters, including the Brinkman number and Reynolds number. It is noted that the velocity profile decreases in magnitude with respect to the Prandtl number, but increases with the radiation parameter. The Eckert number has a marginal effect on the velocity profile. An increased radiation effect leads to a reduced thermal gradient at the hot surface.  相似文献   

5.
The current investigation highlights the mixed convection slip flow and radiative heat transport of uniformly electrically conducting Williamson nanofluid yield by an inclined circular cylinder in the presence of Brownian motion and thermophoresis parameter.A Lorentzian magnetic body force model is employed and magnetic induction effects are neglected.The governing equations are reduced to a system of nonlinear ordinary differential equations with associated boundary conditions by applying scaling group transformations.The reduced nonlinear ordinary differential equations are then solved numerically by Runge-Kutta-Fehlberg fifth-order method with shooting technique.The effects of magnetic field,Prandtl number,mixed convection parameter,buoyancy ratio parameter,Brownian motion parameter,thermophoresis parameter,heat generation/absorption parameter,mass transfer parameter,radiation parameter and Schmidt number on the skin friction coefficient and local Nusselt are analyzed and discussed.It is found that the velocity of the fluid decreases with decrease in curvature parameter,whereas it increases with mixed convection parameter.Further,the local Nusselt number decreases with an increase in the radiation parameter.The numerical comparison is also presented with the existing published results and found that the present results are in excellent agreement which also confirms the validity of the present methodology.  相似文献   

6.
The present note deals with the effects of radiative heat transfer and free convection in MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impulsively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous dissipation and induced magnetic field is assumed to be negligible. The governing linear partial differential equations are solved by finite difference technique. The effects of various parameters (like radiation parameter N, Prandtl number Pr, porosity parameter K) entering into the MHD Stokes problem for flow of dusty conducting fluid have been examined on the temperature field and velocity profile for both the dusty fluid and dust particles.  相似文献   

7.
Heat transfer in a time-dependent flow of incompressible viscoelastic Maxwell fluid induced by a stretching surface has been investigated under the effects of heat radiation and chemical reaction. The magnetic field is applied perpendicular to the direction of flow. Velocity, temperature, and concentration are functions of z and t for the modeled boundary-layer flow problem. To have a hereditary effect, the time-fractional Caputo derivative is incorporated. The pressure gradient is assumed to be zero. The governing equations are non-linear, coupled and Boussinesq approximation is assumed for the formulation of the momentum equation. To solve the derived model numerically, the spatial variables are discretized by employing the finite element method and the Caputo-time derivatives are approximated using finite difference approximations. It reveals that the fractional derivative strengthens the flow field. We also observe that the magnetic field and relaxation time suppress the velocity. The lower Reynolds number enhances the viscosity and thus motion weakens slowly. The velocity initially decreases with increasing unsteadiness parameter δ. Temperature is an increasing function of heat radiation parameter but a decreasing one for the volumetric heat absorption parameter. The increasing value of the chemical reaction parameter decreases concentration. The Prandtl and Schmidt numbers adversely affect the temperature and concentration profiles respectively. The fractional parameter changes completely the velocity profiles. The Maxwell fluids modeled by the fractional differential equations flow faster than the ordinary fluid at small values of the time t but become slower for large values of the time t.  相似文献   

8.
A mathematical model is developed for steady state magnetohydrodynamic (MHD) heat and mass transfer flow along an inclined surface in an ocean MHD energy generator device with heat generation and thermo-diffusive (Soret) effects. The governing equations are transformed into nonlinear ordinary differential equations with appropriate similarity variables. The emerging two-point boundary value problem is shown to depend on six dimensionless thermophysical parameters - magnetic parameter, Grashof number, Prandtl number, modified Prandtl number, heat source parameter and Soret number in addition to plate inclination. Numerical solutions are obtained for the nonlinear coupled ordinary differential equations for momentum, energy and salinity (species) conservation, numerically, using the Nachtsheim–Swigert shooting iteration technique in conjunction with the Runge–Kutta sixth order iteration scheme. Validation is achieved with Nakamura's implicit finite difference method. Further verification is obtained via the semi-numerical Homotopy analysis method (HAM). With an increase in magnetic parameter, skin friction is depressed whereas it generally increases with heat source parameter. Salinity magnitudes are significantly reduced with increasing heat source parameter. Temperature gradient is decreased with Prandtl number and salinity gradient (mass transfer rate) is also reduced with modified Prandtl number. Furthermore, the flow is decelerated with increasing plate inclinations and temperature also depressed with increasing thermal Grashof number.  相似文献   

9.
We study heat transfer in the incompressible flow of a conducting third-grade fluid subject to a uniform magnetic field past an oscillating porous vertical plate.We obtain the analytical form of the boundary-layer velocity profile, the temperature profile, and the skin friction coefficient for small deviations from the Newtonian rheology. We examine the dependence of these quantities on the Prandtl number, the mixed convection parameter, the Hartmann number, and the suction parameter.  相似文献   

10.
Magnetohydrodynamics flow of a visco-elastic incompressible fluid (Walter’s B′ model) past an infinite porous plate in porous medium under the action of transverse uniform magnetic field in the presence of heat source and chemical reaction is investigated. The governing equations of the motion, energy and concentration are solved by a successive perturbation technique. The flow phenomenon is characterized by suction parameter, magnetic parameter, porosity parameter, Grashoff number, modified Grashoff number, Prandtl number, heat source parameter, chemical reaction parameter and Schmidt number. The expressions for skin friction coefficient, Nusselt number, and Sherwood number on the surface are also discussed.  相似文献   

11.
Nanofluids have shown significant promise in thermal enhancement of many industrial systems and they have been used extensively in energy applications during recent years. Keeping such applications in mind, the present work exhibits a two-dimensional numerical simulation for the boundary layer flow of Graphene oxide (GO)-nanofluids adjacent to a thin needle along with heat transfer. Influence of heat generation/absorption and viscous dissipation have been included to explore the heat transport analysis. The nanofluid flow is generated due to a continuously moving horizontal thin needle. The non-linear expressions governing the flow and heat transfer analysis are changed into dimensionless form by introducing new dimensionless variables. The novelty of current study is to predict the multiple numerical solutions for dimensionless velocity and temperature fields. Numerical computations and graphical delineations were done with the assistance of MATLAB software. This study explores the impacts of several dimensionless key parameters, like, magnetic parameter, Prandtl number, nanoparticles volume fraction and ratio of needle's velocities on the flow and thermal distributions. The computational results have proved that the fluid temperature enhances for higher values of nanoparticles volume fraction while an opposite is true for velocity distributions. In addition, the computed outcomes revealed that for the case of upper branch solution, significant reduction in skin-friction coefficient is seen for higher magnetic parameter.  相似文献   

12.
The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the fourth-order Runge-Kutta method coupled with the shooting technique over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, slip velocity parameter, the Deborah number, and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. Comparison of numerical results is made with the earlier published results under limiting cases.  相似文献   

13.
This paper concerns an application to optimal energy by incorporating thermal equilibrium on MHD-generalised non-Newtonian fluid model with melting heat effect. Highly nonlinear system of partial differential equations is simplified to a nonlinear system using boundary layer approach and similarity transformations. Numerical solutions of velocity and temperature profile are obtained by using shooting method. The contribution of entropy generation is appraised on thermal and fluid velocities. Physical features of relevant parameters have been discussed by plotting graphs and tables. Some noteworthy findings are: Prandtl number, power law index and Weissenberg number contribute in lowering mass boundary layer thickness and entropy effect and enlarging thermal boundary layer thickness. However, an increasing mass boundary layer effect is only due to melting heat parameter. Moreover, thermal boundary layers have same trend for all parameters, i.e., temperature enhances with increase in values of significant parameters. Similarly, Hartman and Weissenberg numbers enhance Bejan number.  相似文献   

14.
The current study centralizes on unsteady free convection slip flow of Casson fluid past a vertical permeable plate with Hall current, radiative heat flux, and variable suction. The nonlinear convection is subjected to quartic order. Perturbation method is used to convert the non-linear coupled partial differential equation of the momentum and energy to a system of ordinary differential equations. The dimensionless governing equations are solved analytically for velocity and temperature profiles. The graphs are plotted for sundry parameters for variations in the distinct flow fields w.r.t distance from the plate. Variation in the skin friction for the axial and transverse cases are presented in the form of graphs for various parameters. It is observed that with the increase in the order of non-linear convection and value of radiation parameter, the velocity field increases in Casson fluid. The increase in heat absorption parameter and Prandtl number decreases the temperature profile and increase in radiative heat flux parameter increases the temperature profile.  相似文献   

15.
The paper investigates the effects of heat transfer in MHD flow of viscoelastic stratified fluid in porous medium on a parallel plate channel inclined at an angle θ. A laminar convection flow for incompressible conducting fluid is considered. It is assumed that the plates are kept at different temperatures which decay with time. The partial differential equations governing the flow are solved by perturbation technique. Expressions for the velocity of fluid and particle phases, temperature field, Nusselt number, skin friction and flow flux are obtained within the channel. The effects of various parameters like stratification factor, magnetic field parameter, Prandtl number on temperature field, heat transfer, skin friction, flow flux, velocity for both the fluid and particle phases are displayed through graphs and discussed numerically.  相似文献   

16.
The present work is performed to study the effect of heat generation on fully developed flow and heat transfer of micropolar fluid between two parallel vertical plates. The rigid plates are assumed to exchange heat with an external fluid by convection. The governing equations are solved by using Crank–Nicolson implicit finite difference method. The effects of governing parameters such as transient, heat generation, micropolar parameter, Prandtl number, Biot number, and Reynolds number on the velocity and temperature profiles are discussed. It is found that the presence of heat generation enhances the velocity and temperature of the micropolar fluid at the middle of the channel.  相似文献   

17.
The heat and mass transfer of electrically conducting fluid through porous media over an accelerating surface subject both to power law surface temperature and power law heat flux variations with a temperature-dependent heat source in the presence of a transverse uniform magnetic field is studied. A series solution to the energy and species concentration equation in terms of Kummer’s function is studied. The effect of Prandtl number and Schmidt number is studied with the help of graphs.  相似文献   

18.
The magnetic impacts upon the transport of heat and mass of an electrically conducting nanofluid within an annulus among an inner rhombus with convex and outer cavity with periodic temperature/concentration profiles on its left wall are assessed by the ISPH method. The right wall has ${T}_{c}$ and ${C}_{c},$ flat walls are adiabatic, and the temperature and concentration of the left wall are altered sinusoidally with time. The features of the heat and mass transfer and fluid flow through an annulus are assessed across a wide scale of Hartmann number $Ha,$ Soret number $Sr,$ oscillation amplitude $A,$ Dufour number $Du,$ nanoparticles parameter $\phi ,$ oscillation frequency $f,$ Rayleigh number $Ra,$ and radius of a superellipse $a$ at Lewis number $Le=20,$ magnetic field's angle $\gamma =45^\circ ,$ Prandtl number ${\Pr }=6.2,$ a superellipse coefficient $n=3/2,$ and buoyancy parameter $N=1.$ The results reveal that the velocity's maximum reduces by $70.93 \% $ as $Ha$ boosts from 0 to 50, and by $66.24 \% $ as coefficient $a$ boosts from $0.1$ to $0.4.$ Whilst the velocity's maximum augments by $83.04 \% $ as $Sr$ increases from 0.6 to 2 plus a decrease in $Du$ from 1 to 0.03. The oscillation amplitude $A,$ and frequency $f$ are significantly affecting the nanofluid speed, and heat and mass transfer inside an annulus. Increasing the parameters $A$ and $f$ is augmenting the values of mean Nusselt number $\overline{Nu}$ and mean Sherwood number $\overline{Sh}.$ Increasing the radius of a superellipse $a$ enhances the values of $\overline{Nu}$ and $\overline{Sh}.$  相似文献   

19.
The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constructive/destructive chemical reaction. The upper-convected Maxwell (UCM) model is used here to characterize the non-Newtonian behavior of the fluid. Using similarity solutions, the governing nonlinear partial differential equations are transformed into ordinary ones and are then solved numerically by the shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. The fluid velocity initially decreases as the unsteadiness parameter increases and the concentration decreases significantly due to the increase in the unsteadiness. The effect of increasing values of transpiration (suction) and the Maxwell parameter is to suppress the velocity field; however, the concentration is enhanced as transpiration (suction) and the Maxwell parameter increase. Also, it is found that the fluid velocity decreases as the magnetic parameter increases; however, the concentration increases in this case.  相似文献   

20.
Entropy generation is the loss of energy in thermodynamical systems due to resistive forces,diffusion processes, radiation effects and chemical reactions. The main aim of this research is to address entropy generation due to magnetic field, nonlinear thermal radiation, viscous dissipation, thermal diffusion and nonlinear chemical reaction in the transport of viscoelastic fluid in the vicinity of a stagnation point over a lubricated disk. The conservation laws of mass and momentum along with the first law of thermodynamics and Fick's law are used to discuss the flow, heat and mass transfer, while the second law of thermodynamics is used to analyze the entropy and irreversibility. The numbers of independent variables in the modeled set of nonlinear partial differential equations are reduced using similarity variables and the resulting system is numerically approximated using the Keller box method. The effects of thermophoresis,Brownian motion and the magnetic parameter on temperature are presented for lubricated and rough disks. The local Nusselt and Sherwood numbers are documented for both linear and nonlinear thermal radiation and lubricated and rough disks. Graphical representations of the entropy generation number and Bejan number for various parameters are also shown for lubricated and rough disks. The concentration of nanoparticles at the lubricated surface reduces with the magnetic parameter and Brownian motion. The entropy generation declines for thermophoresis diffusion and Brownian motion when lubrication effects are dominant. It is concluded that both entropy generation and the magnitude of the Bejan number increase in the presence of slip. The current results present many applications in the lubrication phenomenon,heating processes, cooling of devices, thermal engineering, energy production, extrusion processes etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号