首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi_2MoO_6(BMO)作为一种典型的Bi基光催化剂,近年来受到越来越多的关注并被广泛应用.然而, Bi_2MoO_6的可见光光催化活性仍然存在一些限制,如有限的光响应范围和低电荷分离效率.为了提高光催化活性,研究者采取了各种策略,包括元素掺杂、形成异质结构和形貌控制等.早期研究表明,氧空位可以拓展光催化剂的光吸收区域,并且氧空位是光催化剂表面反应物活化最活跃的位点,可以促进电荷分离和使电子局域化.因此,制备具有氧空位的Bi基光催化剂可能是提高其光催化性能的有效途径.然而,氧空位对Bi_2MoO_6电子结构和光催化反应机理的影响尚不清楚.本文通过在制备过程中加入NaBH_4诱导氧空位形成,合成出了具有氧空位的可见光驱动的Bi_2Mo_6微球(BMO-X).利用UV-visDRS光谱研究了合成后的光催化剂的光学吸收性能,发现在产生氧空位后, BMO-4在可见区域的吸收显著增强,带隙从BMO的2.40 eV降低到BMO-4的2.07 eV.通常,较强的光吸收能力对光催化反应更有利,因为可以产生更多的光生载流子参与光催化作用.将所制备的催化剂用于光催化净化NO,结果表明具有氧空位的Bi_2MoO_6(BMO-4)的可见光催化NO净化效率为43.5%,远高于本体Bi_2MoO_6(BMO)的可见光光催化活性(25.0%).结合实验表征和理论计算结果,探讨了氧空位对Bi_2MoO_6电子结构和光催化净化NO反应机理的影响.采用低温固态电子顺磁共振(EPR)检测了催化剂中的氧空位,在BMO中仅检测到弱的EPR信号,表明BMO中几乎没有氧空位,而BMO-4上的EPR信号非常强,表明NaBH_4的引入诱导产生了大量的氧空位.DFT计算确认BMO-4的带隙内有中间能级形成.XPS测试结果表明,与BMO相比, BMO-4的Bi–O峰值强度略有下降,可能是由于部分Bi–O中缺少O原子以形成氧空位所致.PL结果表明,具有氧空位的Bi_2MoO_6(BMO-4)显示出显著降低的光激发电子-空穴对分离效率,可能是由于氧空位改变了Bi_2MoO_6的电子结构.此外,理论计算结果发现具有氧空位的Bi_2MoO_6的表面电子可以位于氧空位周围,这有利于电荷分离和反应物活化.同时,该结果表明BMO-4中增强的电荷分离归因于氧缺陷对改进的电子结构的影响.此外,电子局域化可以为反应物活化提供额外的活性位点(O_2, NO等),这可以促进BMO-4中自由基的产生和污染物转化.利用原位红外光谱动态监测光催化NO氧化过程.与本体Bi_2MoO_6相比,引入氧空位后的Bi_2MoO_6光催化净化NO的反应机理未改变.但是, BMO-4上终产物的特征峰强度显著增大.此外, BMO-4上明显增加的多种形式的最终产物,桥接硝酸盐消失并转化为更稳定的双齿硝酸盐.这些结果可归因于氧空位可以促进电荷分离和自由基的大量产生,从而增强光催化氧化性能.本工作为理解光催化氧气空位和气相光催化反应机理提供了新的见解.  相似文献   

2.
窄带隙Bi OI光催化剂因电荷重组速率快而导致其可见光下的光催化效率较低.本文以NaBH4为还原剂,采用简单的常温原位组装法在Bi OI上构建氧空位、金属Bi颗粒和Bi_2O_2CO_3共作用,以克服Bi OI的缺点.在合成的三元Bi/BiOI/(BiO)_2CO_3中,氧空位、双异质结(即Bi/BiOI和Bi OI/(BiO)_2CO_3)以及Bi粒子的表面等离子体共振效应均促进了电子-空穴分离和电荷载流子浓度的增加,从而提高了可见光的整体光催化效率.将制备的催化剂用于可见光下去除连续流空气中的ppb级NO.结果表明, Bi/BiOI/(BiO)_2CO_3的NO去除率显著增强,大约为50.7%,并远高于BiOI(1.2%).密度泛函理论计算和实验结果表明, Bi/BiOI/(BiO)_2CO_3复合材料可明显促进光催化NO氧化的活性氧生成.本文可提供一个新的策略来改性窄带隙半导体和探索其他含铋异质结构的可见光驱动光催化剂.XRD结果发现, BOI-70中出现Bi和(BiO)_2CO_3的特征峰,但BOI却很微弱; XPS结果表明,高价态Bi~(3+)被NaBH4部分还原而形成低价态金属Bi颗粒,且I3d峰位结合能进一步证实了BOI-70样品中存在BiOI,由此可见,成功制备了三元Bi/BiOI/(BiO)_2CO_3异质结催化剂, EPR结果表明氧空位的产生.SEM和TEM结果表明, Bi OI和三元Bi/BiOI/(BiO)_2CO_3催化剂为纳米片组装的花状结构.HRTEM的结果进一步显示了金属铋、正方晶相Bi OI和(BiO)_2CO_3对应的晶格间距.紫外-可见光催化去除NO的测试结果表明, BOI-70(50.7%)的光催化活性明显高于BOI(1.2%)和P25(11.5%),且在循环测试实验中表现出优异的稳定性.UV-visDRS测试结果显示, BOI-70具有更强的光吸收;PL结果表明,其光生电子-空穴对的分离效率更高.ESR结果表明,参与反应的主要活性物种为·O2-和·OH自由基.DFT计算结果证实了OVs对电荷载流子的局部环境和快速传输:OV为电子捕获陷阱,使电子从OVs转移到O_2分子形成活性氧物种;O2表面的吸附能从无缺陷BiOI时的–0.29 e V降到有缺陷的–0.76 eV, O-O键长从1.30增至1.37?,说明OVs通过降低氧的吸附能可促进O2分子在光催化剂表面的吸附.综上所述,由于BiNPs的异质结效应和SPR效应以及OVs的存在, Bi/BiOI/(BiO)_2CO_3三元体系的原位组装通过增加载流子浓度和加速电子空穴分离使光催化活性显著增加.  相似文献   

3.
具有等离子体效应的贵金属Au和Ag等常被用于修饰半导体光催化剂.非贵金属Bi成本低,来源丰富,最近被报道可以直接作为等离子体光催化剂应用于空气中NO净化.为了进一步提高Bi单质的光催化活性,需对其进行改性.SiO_2的禁带宽度过大,不能单独作为光催化剂,但它的稳定性好,比表面积大,因而常作复合材料用于提高光催化剂的反应效率、稳定性及对反应物的吸附能力.目前,尚未见SiO_2修饰Bi单质的相关报道.本文通过溶剂热法制备了SiO_2@Bi微球,并对其微结构进行了表征,对光催化氧化NO的反应过程进行了原位漫反射红外光谱(DRIFTS)分析,揭示了Bi–O–Si键在提升SiO_2@Bi光催化氧化NO性能中的作用机制.结果显示,用SiO_2纳米颗粒修饰Bi球,形成的Bi–O–Si键作为热电子传输通道,能显著提高Bi单质光催化氧化去除NO的能力.扫描电镜、透射电镜、傅里叶变换红外光谱和X射线光电子能谱等表征结果表明,SiO_2纳米颗粒负载于Bi球上,且SiO_2@Bi内形成了Bi–O–Si键.作为光生热电子的传输通道,Bi–O–Si键能促进光生电子的转移和载流子的分离,提高活性自由基·OH和·O_2~-的产量,增强SiO_2@Bi在紫外光下等离子体光催化氧化NO的能力.自由基捕获测试(ESR)表明,SiO_2@Bi在光催化反应中产生的·OH和·O_2~-数量均明显高于单质Bi在反应中形成自由基的数量.原位DRIFTS发现,Bi–O–Si键能快速转移光生电子,从而有利于NO→NO_2→NO_3~-反应的进行.此外,SiO_2@Bi的比表面积变大,因而对NO的吸附能力增强,同时促进了光催化反应.本文揭示了SiO_2@Bi等离子体光催化性能增强的微观机制和光催化氧化NO的反应机理,为Bi基光催化剂的改性和应用提供了新的认识.  相似文献   

4.
Bi OI具有独特的层状结构及较窄的带隙,是具有可见光响应的光催化剂.然而,高光生载流子复合率抑制了其光催化活性.大量研究表明,氧缺陷不但是催化剂表面最具活性的位点,而且可以通过减小禁带宽度扩大光响应范围.与此同时,氧缺陷也可以作为光致电荷陷阱,抑制电子-空穴复合,并作为电荷转移到吸附物种的吸附位点.金属的表面等离子体共振(SPR)效应为半导体材料更高效的光吸收和利用提供了一条崭新的途径,从而可以获得更好的太阳光转换和光催化效率.然而, SPR效应和由氧缺陷引起的多个中间能级协同作用还未被探究.本文研究了利用金属铋的SPR效应和引入缺陷共同提高BiOI的光催化性能.通过部分还原BiOI制备出具有较高可见光催化去除氮氧化物活性的Bi@缺陷型BiOI,研究了还原剂用量对Bi@缺陷型Bi OI光催化性能的影响.发现用2 mmol还原剂Na BH4制备的光催化剂(Bi/BiOI-2)具有最高效的可见光催化活性.XRD、XPS、SEM和TEM表征表明Bi单质沉积在Bi OI表面,整个体系由纳米片自组装为海绵状立体结构.BET比表面积增大,结合SEM推测是由纳米片的分层堆叠造成的.UV-DRS表明带隙宽度仅有1.8 eV的Bi OI具有可见光响应.EPR和态密度(DOS)结合可以证明氧缺陷及其激发多个中间能级的存在.中间能级可以促进电子在可见光下从价带到导带的转移.PL表明体系中Bi金属的SPR效应所激发的电磁场可以促进光生载流子的分离.通过DFT理论计算催化剂的电子结构,差分、电子局域函数(ELF)及电势表明Bi单质和Bi-O层间强的共价作用形成一个通道,使得热电子从较高电势的Bi单质向相对低电势的Bi OI传递, Bi单质PDOS的计算证明价带变宽归因于Bi元素轨道的贡献, Bi的SPR效应激发Bi OI的电子到更高能级并聚集在价带顶,这有利于光生载流子的分离.ESR表明提升的电荷分离和迁移率促进了羟基和超氧自由基的产生.结合表征及理论计算结果,活性的增强可归因于金属Bi和氧空位的协同效应.氧缺陷激发的中间能级促进了电荷转移, Bi金属的SPR效应使可见光吸收效率提高并且促进了光生载流子分离,这些是增强光催化性能的关键因素.此外,采用原位红外光谱法(FT-IR)对Bi/BiOI-2的NO吸附和反应过程进行了动态监测.根据中间产物分析和DFT计算结果,提出了金属Bi和氧空位协同作用提高Bi/BiOI光催化性能的机理.本研究为高性能光催化剂的设计和理解空气净化光催化反应机理提供了新的思路.  相似文献   

5.
异质结构光催化剂为实现高效的电荷分离,提高光催化性能提供了一种有效的途径.虽然宽禁带和窄禁带光催化剂已经得到了广泛的研究,但它们在接触界面上的电荷分离和转移规律尚未完全揭示.本文采用简便的方法成功地制备了一种新型SrTiO3/BiOI(STB)异质结构光催化剂.该光催化剂中的异质结构可以将光吸收扩展到可见光范围,从而在可见光照射下获得较高的光催化NO去除性能.实验和理论证据表明,BiOI光生电子可以通过预成型的电子传递通道直接转移到SrTiO3表面.XRD和XPS结果表明,SrTO3/BiOI复合材料已成功制备.SEM和TEM图像显示了SrTiO3,BiOI和STB样品的形貌.能量色散X射线(EDX)元素图清楚地表明SrTiO3均匀分布在BiOI纳米片表面,证实BiOI与SrTiO3形成了界面.高分辨率XPS表明,电子从BiOI中Bi和I原子转移到STB化合物中SrTO3的Sr和Ti原子.采用DFT进一步确定了BiOI与SrTiO3相互作用的机制.电子局域函数(ELF)表明,STB的接触界面存在共价相互作用.SrTiO3和BiOI之间生成的共价键导致局域化超额电子(e-ex)的积累.在可见光照射下,界面内的电子交换增强,从而提高反应物活化和ROS生成的效率.采用自制的连续流反应体系,研究了在可见光照射下制备的样品对NO去除的光催化性能.与SrTiO3和BiOI相比,STB具有显著增强的可见光光催化活性,去除率为59.0%.UV-vis DRS显示,STB异质结的光吸收扩展到可见光范围.SrTiO3具有可见光活性,这归因于EPR所描述的氧空位的存在.随后计算态密度(DOS),发现氧空位可以形成缺陷能级,降低激发电子所需的光能.利用ESR光谱发现,STB上的ESR信号强度都要强得多,说明STB异质结具有较好的氧化能力,也说明光生载流子可以通过电子传递通道被有效地分离.原位红外光谱表明,在SrTiO3上,NO主要转化为NO2.STB的加速电荷分离和转移特性,促进活性氧的生成,从而进一步有效地将有毒中间体NO2转化为目标产物.设计并制备的SrTiO3/BiOI异质结光催化剂在可见光辐照下净化空气中NO的效率提高,同时抑制了有毒中间体的生成.通过实验和理论相结合的方法揭示了在两种材料的接触界面上建立的电子传递通道.来自BiOI的光生电子可以通过预先形成的电子传递通道直接转移到SrTiO3表面,从而促进了ROS的生成,所以整体的NO纯化效率和对有毒中间体的抑制作用提高.综上,本文提出了一种简单、新颖的促进空气污染物高效安全净化的策略.  相似文献   

6.
具有等离子体效应的贵金属Au和Ag等常被用于修饰半导体光催化剂.非贵金属Bi成本低,来源丰富,最近被报道可以直接作为等离子体光催化剂应用于空气中NO净化.为了进一步提高Bi单质的光催化活性,需对其进行改性.SiO2的禁带宽度过大,不能单独作为光催化剂,但它的稳定性好,比表面积大,因而常作复合材料用于提高光催化剂的反应效率、稳定性及对反应物的吸附能力.目前,尚未见SiO2修饰Bi单质的相关报道.本文通过溶剂热法制备了SiO2@Bi微球,并对其微结构进行了表征,对光催化氧化NO的反应过程进行了原位漫反射红外光谱(DRIFTS)分析,揭示了Bi–O–Si键在提升SiO2@Bi光催化氧化NO性能中的作用机制.结果显示,用SiO2纳米颗粒修饰Bi球,形成的Bi–O–Si键作为热电子传输通道,能显著提高Bi单质光催化氧化去除NO的能力.扫描电镜、透射电镜、傅里叶变换红外光谱和X射线光电子能谱等表征结果表明,SiO2纳米颗粒负载于Bi球上,且SiO2@Bi内形成了Bi–O–Si键.作为光生热电子的传输通道,Bi–O–Si键能促进光生电子的转移和载流子的分离,提高活性自由基?OH和?O2?的产量,增强SiO2@Bi在紫外光下等离子体光催化氧化NO的能力.自由基捕获测试(ESR)表明,SiO2@Bi在光催化反应中产生的?OH和?O2?数量均明显高于单质Bi在反应中形成自由基的数量.原位DRIFTS发现,Bi–O–Si键能快速转移光生电子,从而有利于NO→NO2→NO3?反应的进行.此外,SiO2@Bi的比表面积变大,因而对NO的吸附能力增强,同时促进了光催化反应.本文揭示了SiO2@Bi等离子体光催化性能增强的微观机制和光催化氧化NO的反应机理,为Bi基光催化剂的改性和应用提供了新的认识.  相似文献   

7.
异相光催化技术已经受到了国内外广泛关注,逐渐成为利用太阳能解决能源与环境问题的有效手段.典型异相光催化反应的步骤包括光子捕获、载流子分离与迁移、以及载流子参与光化学氧化还原反应,因此,开发太阳能利用率高、电荷复合率低、载流子迁移效率高的高活性、高稳定性的光催化剂在环境修复和太阳能转化的实际应用中具有极其重要的意义.在半导体光催化剂上同时集成杂原子掺杂和表面等离振子共振效应可以有效提高可见光利用率和电荷分离,实现更好的太阳光利用和光催化效率.因此,我们设计了一种新型的Bi量子点修饰的C掺杂BiOCl光催化剂(C/BOC/B)来去除空气中NOx污染物.首先,通过密度泛函理论(DFT)评估了Bi负载和C掺杂协同提高Bi OCl光催化性能的可行性.理论结果证实,掺杂的C原子可以创造电子通道,诱导电荷定向地从Bi量子点转移到BiOCl(BOC);同时,具有等离子体效应的Bi量子点可以充当光捕获中心和电子供体.因此, C原子掺杂和Bi量子点负载的协同作用,有望进一步提高材料的光催化性能.随后,通过简单的溶剂热法合成了C/BOC/B样品.SEM和TEM图像显示了BOC, C/BOC和C/BOC/B样...  相似文献   

8.
BiOBr具有独特的层状纳米结构和合适的可调节的能带结构,因而广泛应用于光催化领域中.但其可见光催化效率仍需要进一步提高.最近,氧空位调控技术广泛应用于光催化剂改性中.本文研采用溶剂热法(采用水/乙二醇溶液)合成了一系列具有氧空位的BiOBr纳米片.通过改变水/乙二醇的比例调节BiOBr氧空位的量和晶面,以增强其可见光催化活性.虽然有关氧空位在光催化中的作用已有研究,但氧空位对电荷转移和反应物活化影响的机理仍不清楚.因此,本文采用X射线衍射、扫描电镜、透射电镜、荧光光谱(PL)、紫外-可见漫反射光谱(UV-Vis DRS)、电子自旋共振(ESR)、电子顺磁共振(EPR)和比表面积-孔结构(BET-BJH)分析等手段考察了含有氧空位的BiOBr纳米片的物理化学性质,通过原位红外光谱研究了样品可见光催化氧化NO的转化路径及反应机理.同时结合密度泛函理论(DFT)计算进一步揭示氧空位对电子激发、电子-空穴分离和转移、以及光催化氧化反应过程的影响.表征结果表明,采用水/乙二醇混合溶液的方法制得了BiOBr样品(BOB,BOB-1C,BOB-2C,和BOB-3C),其表面氧空位随着混合溶液中乙二醇溶液的增加而增加.另外,BiOBr样品均呈纳米片层状,且随着乙二醇溶液的增加,BiOBr纳米片逐渐组装成紧密结合的球状结构.BET-BJH测试结果显示,BOB-3C的比表面积(15.34 m~2/g)显著高于BOB(1.1 m~2/g).UV-Vis DRS结果表明,BOB-3C具有比BOB更良好的可见光吸收能力.可见光催化去除NO的测试结果表明,BOB-3C的光催化活性(38.9%)明显高于BOB(4.1%).ESR研究发现,BOB-3C能产生比BOB更多的活性氧化物种(·O~–自由基和·OH自由基).由此可见,因表面氧空位浓度的变化,而使BOB和BOB-3C表现出不同的理化特性.同时DFT计算也印证了光催化过程中氧空位对氧气吸附活化、NO吸附氧化和能带结构的影响.可见光催化氧化NO的原位红外光谱表明,BOB-3C与BOB相比,光催化氧化NO的转化路径发生了变化,表明氧空位对NO氧化起到了促进作用.氧空位在光催化中表现出多功能性,包括引入中间能级以增强光吸收,促进电子转移,充当催化反应和氧分子活化的活性位点,促进反应产物转化为最终产物,从而增强样品可见光光催化效率.为揭示氧空位在光催化剂中的作用和光催化NO氧化机理提供了新的思路.  相似文献   

9.
电荷分离及转移是影响光催化效率的重要因素之一.本文采用简易的水热焙烧法,设计并构筑了Bi2Mo3O12@Bi2O2CO3(BMO@BOC)异质结,促进了光生载流子的分离与迁移,并优化了异质结构中的BMO与BOC的组分比例,其中BMO@BOC-1样品展现了最高的光催化脱除NO效率(~35%),且具有优异的循环稳定性.SEM与TEM结果表明,BMO@BOC-1样品是由超薄纳米片构成,可以提供丰富的反应活性位点,从而促进光催化反应的发生.HRTEM,XRD及Raman充分证明已成功合成不同组分比例的BMO@BOC异质结.同时, Raman与XPS结果表明, BMO@BOC异质结由Bi, O,C及Mo组成, XPS图谱中拟合峰位置的偏移是由异质结组分不同所致.值得注意的是, UV-visDRS结果表明,BMO@BOC-4具有最好的光谱吸收性能,但它与BMO@BOC-2和BMO@BOC-1样品的吸收带边相近,而PL结果则表明BMO@BOC-1具有更好的电荷分离性能,以及合适的组分比例,在一定程度上可以促进光吸收,并能最大限度的促进光生载流子的分离.BMO@BOC-1样品的ESR测试结果说明,·OH与·O2-的含量随着光照时间的延长而增加,证实了它们是光催化NO氧化的活性中间物种.另外,光催反应机制的研究在高效光催化剂的研发及其商业化应用中具有深远意义.本文还利用原位红外实时动态监测手段,采用"连续流测试法"与"间歇流测试法"直观动态地研究了BMO@BOC异质结催化剂表面光催化NO脱除反应过程.结果表明,在开灯前的吸附阶段于催化剂表面形成了NO-, NO2-以及NO2等中间产物,开灯后的氧化阶段出现终产物(NO3-).进一步深入分析,中间产物NO-和NO2-在氧化阶段会被氧化活性物种进一步氧化成NO3-,而中间产物NO2可能作为一种毒副产物影响NO的完全氧化.综上所述,本文将为理解NO氧化过程提供直观且动态的研究方法,对光催化技术的发展具有重要的指导意义.  相似文献   

10.
构建氧空位以及附着金属单质Bi(Bi0)是增强半导体材料光吸收性能、促进半导体光生载流子分离的有效方法。通过简单的共沉淀法及氢气热还原成功制备了PO43-掺杂Bi2O2CO3附着Bi0(Bi-P-BOC)的可见光催化剂,并对其在可见光下催化降解氧氟沙星(OFX)的性能及机理进行了研究。材料表征结果表明BOC随着PO43-的均匀掺杂,可见光吸收能力增强,表面缺陷增多,比表面积增大。而随着氢气热还原,BOC表面形成Bi0的同时也原位构建了大量的氧空位。可见光催化性能测试表明,Bi-P-BOC可以在180 min内降解约85%的OFX,降解速率为0.013 0 min-1,是BOC降解速率的8倍。Bi-P-BOC光催化降解机理表明其具有更好的可见光吸收能力,Bi0以及氧空位的存在促进了光生载流子的分离,h+是其...  相似文献   

11.
朱鹏飞  尹晓荷  高新华  董国辉  徐景坤  王传义 《催化学报》2021,42(1):175-183,后插32-后插33
氧化锌作为一种半导体材料,具有合适的能带结构位置,高催化效率,低成本和环境可持续性,因而广泛用于光催化领域.然而,由于氧化锌的宽带隙,可见光吸收能力差以及光生电子-空穴对的快速复合,极大地影响了其光催化效率.通过引入氧空位调控光催化剂的结构被证明是一种可以改善光生载流子的分离,从而提高光催化性能的有效方法.本文以ZIF-8为前驱体,采用两步煅烧法合成了具有不同浓度氧空位分布的ZnO纳米光催化剂,通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、X射线光电子能谱(XPS)、电子顺磁共振(EPR)、荧光光谱仪(PL)等手段系统地分析了合成的光催化剂的理化性质,并评价了它们在可见光下光催化氧化去除NO反应性能.EPR结果表明,样品中氧空位的浓度取决于温度处理的过程.通过两步煅烧法得到氧化锌中氧空位的含量高于一步直接煅烧法所得的样品.此外,随着煅烧温度升高,合成的氧化锌晶格越完好,其氧空位含量越少.UV-Vis DRS结果表明,两步煅烧法合成的ZnO与商业的ZnO及一步法直接煅烧合成的ZnO相比,其吸光范围从紫外光拓展到了可见光,表现出了更加优异的吸光性能.光催化反应结果表明,与商业氧化锌和一步直接煅烧法所得样品相比,两步煅烧法合成的样品表现出了更优异的光催化去除NO性能,并抑制了中间产物毒性NO2的产生,促进了NO的深度氧化.具体反应路径为:在光照过程中,光生电子很容易被氧空位俘获,与O2反应产生更多的超氧自由基(·O2^-),从而将NO氧化成最终的产物硝酸盐.尤其有趣的是,先在350 ℃煅烧2小时再400℃煅烧1小时的两步法样品Z 350-400的NO去除效率分别比一步法样品Z 400(400℃煅烧)和商用ZnO高出1.5和4.6倍.这表明以MOF材料衍生的具有适当量氧空位的金属氧化物为一种高效去除NO的光催化剂具有很好的应用前景.  相似文献   

12.
任雨雨  李源  吴晓勇  王金龙  张高科 《催化学报》2021,42(1):69-77,后插1
近年来,随着工业化和城镇化的飞速发展,作为一种典型的空气污染物,NOx已经造成严重的环境问题,甚至威胁到人类的身体健康.为了解决这个问题,科研工作者研发了许多NOx去除技术,其中光催化技术被认为是一种能有效地去除空气中NOx的技术.作为一种廉价、无毒、热稳定性强、能带结构合适的光催化材料,石墨相氮化碳(g-C3N4)能够有效的利用可见光,将NO光催化氧化为NO3^-.但是由于自身的光生载流子复合率较高,光谱响应范围较窄等缺点,g-C3N4不能有效的光催化去除空气中持续流动的低浓度NO,限制了其在光催化领域中的实际应用.因此,有必要合成出高催化活性、高光响应范围的S型复合光催化剂来克服以上光催化材料的不足.为此,我们利用超声辅助法制备了一系列的S型Sb2WO6/g-C3N4复合光催化剂,呈现出优异的光催化活性:与其纯组分相比,所制备的15-Sb2WO6/g-C3N4复合光催化剂在可见光下照射30 min,可去除68%以上的持续流动的NO(初始浓度400 ppb),且五次循环实验后,Sb2WO6/g-C3N4复合光催化剂仍然具备良好的光催化活性和稳定性.透射电子显微镜结果清楚地表明,Sb2WO6颗粒已成功地均匀地负载到g-C3N4纳米片表面.紫外可见漫反射光谱的结果表明,Sb2WO6和g-C3N4的复合可以有效地提高对可见光的吸收能力.与纯g-C3N4样品相比,复合样的吸收带边具有明显的红移.光致发光光谱结果表明,在Sb2WO6/g-C3N4复合半导体中,光生载流子的复合受到抑制.光电流与电阻抗分析可知,与纯Sb2WO6和g-C3N4相比较,在15-Sb2WO6/g-C3N4复合光催化剂中的光生载流子的迁移速率和分离效率较高.通过对样品的能带结构分析并已有参考文献,我们认为Sb2WO6和g-C3N4的接触边界形成了S型异质结,使光生载流子的转移速率更快,改善了光生电子-空穴对分离,而且增强可见光的利用效率,从而提高了光催化性能.自由基捕获实验结果证实,?O2^-主导了Sb2WO6/g-C3N4复合光催化剂去除NO反应,h^+也在一定程度上参与了光催化氧化NO的反应.通过原位红外光谱技术研究了Sb2WO6/g-C3N4光催化NO氧化的反应机理,研究发现,Sb2WO6/g-C3N4复合光催化剂光催化去除是氧诱导的反应.具体反应机理是在可见光的驱动下,光催化剂表面的光生电子会与被吸附的O2反应生成?O2^-,并与光生h^+一起,共同将低浓度的NO光催化氧化为亚硝酸盐或硝酸盐.该研究有助于深入研究光催化氧化NO机理,并为设计高效光催化剂用于光催化氧化ppb级NO提供了一种极具前景的策略.  相似文献   

13.
卤氧铋是一类具有独特层状堆叠结构的半导体光催化剂,但单一的卤氧铋存在着光生电子与空穴易复合等缺陷.而贵金属颗粒通常可以充当电子"陷阱",促进电荷转移,延长载流子寿命,从而产生更好的光催化性能.本文成功合成了Bi_(24)O_(31)Cl_(10)光催化剂,并对其进行Pt纳米颗粒修饰,从而获得了具有高光催化性能的光催化剂Pt/Bi_(24)O_(31)Cl_(10).其中,Bi_(24)O_(31)Cl_(10)是以Bi(NO_3)_3·5H_2O和NaCl作为前驱体并用氨水调节pH后水热制得,而Pt的负载使用光还原法.对获得的样品进行XRD测试并将结果与Bi_(24)O_(31)Cl_(10)的标准卡片进行对比,发现各峰的位置都有较好的对应,证明Bi_(24)O_(31)Cl_(10)合成成功.采用TEM观测Pt/Bi_(24)O_(31)Cl_(10)的形貌,发现Bi_(24)O_(31)Cl_(10)呈片状,其表面存在Pt颗粒.XPS测试发现,该样品只含有Pt,Bi,O,Cl四种元素,且它们的价态符合预期.这进一步说明成功合成了Pt/Bi_(24)O_(31)Cl_(10).考察了可见光照射下Bi_(24)O_(31)Cl_(10)和Pt负载量分别为0.5%,1%,2%和3%的Pt/Bi_(24)O_(31)Cl_(10)对甲基橙溶液的降解的光催化性能.结果表明,相比于载体,Pt/Bi_(24)O_(31)Cl_(10)的光催化性能有了显著提高,其中1%Pt/Bi_(24)O_(31)Cl_(10)的光催化活性最佳,并且在循环降解实验中表现出稳定的光催化活性.DRS测试结果表明,Bi_(24)O_(31)Cl_(10)的带隙宽度为2.45 eV,而Pt的负载有效减小了禁带宽度,从而提高了催化剂对光的利用率.对Bi_(24)O_(31)Cl_(10)进行了DFT建模,结果显示,Bi,Cl和O原子的排列遵循分层叠加模型,且每层垂直于内部静电场堆叠.而从它的能带结构和状态密度(DOS)可知,其导、价带边沿较为分散,这意味着光生载流子的有效质量较小,从而使载流子的运输更为容易.利用DRS以及对Bi_(24)O_(31)Cl_(10)能带结构的计算结果,根据半经验公式可知,Bi_(24)O_(31)Cl_(10)的导、价带位置分别为0.395和2.845 eV.而Pt的费米能级为0.8 eV.结合ESR测试结果,可对Pt/Bi_(24)O_(31)Cl_(10)催化降解甲基橙的过程提出合理猜想:Bi_(24)O_(31)Cl_(10)被光激发后,其表面的Pt充当电子"陷阱"以促进电子和空穴分离,被Pt捕获的电子与表面吸附的O_2形成O_2~–,并进一步与甲基橙反应,完成光降解过程.  相似文献   

14.
石墨相氮化碳(g-C_3N_4)具有独特的二维层状结构和合适的能带结构,因而在可见光催化领域广受关注.尤其是在可见光去除环境污染物领域,得到了较为充分的研究与应用.然而g-C_3N_4去除环境污机理的反应机理尚不明确.因此,本文采用理论计算与实验高度结合的研究方法,以光催化NO去除为例,深入阐述了光照下g-C_3N_4表面活性氧物种(ROS)的生成及转化过程,及其介导下的NO光催化氧化机理.X射线衍射结果表明,g-C_3N_4是三嗪环层内聚合后层层堆叠而成,并由红外光谱确定了其表面的官能团类型.该结构经扫描电镜和透射电镜得到了进一步的验证.采用光致激发谱和紫外可见漫反射光谱等实验表征与密度泛函理论计算结合的光电性质分析,我们发现,g-C_3N_4在可见光下具有一定的响应,这为其在光催化去除NO中奠定了基础.同时,其价带位置过高,无法自行产生氧化性较强的羟基自由基(.OH).电子自旋共振技术结果表明g-C_3N_4在光照下能捕获到·O_2~-和·OH两种活性自由基.采用反应路径计算发现,·OH是由·O_2~-在导带上逐步得到电子被还原而生成,其中的速率控制步骤是H_2O_2的解离.因此,促进O_2分子的吸附和活化和克服H_2O_2解离的反应活化能是产生·OH和提升g-C_3N_4光催化氧化活性的关键.采用原位红外光谱技术对g-C_3N_4上NO的氧化去除过程进行了表征,发现其主要中间产物为NO_2,主要终产物为NO_2~-和NO_3~-,采用反应路径计算对该反应过程进行了理论模拟,发现在·O_2~-介导下,最高反应活化能为0.66 eV,而在·OH介导下,该活化能降低至0.46 eV,表明·OH的氧化性要明显强于·O_2~-.总之,本文采用一种可行的、高度结合的实验与计算手段研究了g-C_3N_4上ROS的生成及转化过程及其对NO去除的反应历程,在原子尺度揭示了该反应的机理,加深了对ROS在光催化环境污染物降解过程中作用的理解.  相似文献   

15.
制备了C/CaFe_2O_4纳米棒复合材料,并考察了其光催化性能,同时深入研究了C修饰对CaFe_2O_4活性的影响.研究发现,复合材料的光催化降解活性与C和CaFe_2O_4的质量比密切相关.其最佳的碳含量为58 wt%,所得复合光催化剂对亚甲基蓝(MB)的降解速率常数达到0.0058 min~(-1),是铁酸钙的4.8倍.进一步研究表明,C修饰在CaFe_2O_4表面显著提高了样品对亚甲基蓝染料的吸附性能.吸附等温线结果发现,MB以单分子层形式吸附于CaFe_2O_4表面.总体而言,C覆盖在CaFe_2O_4表面可以使光生电子和空穴更有效的分离和传输,可以显著提高催化剂对MB的吸附性能,还可以增强样品对光的吸收能力,因而催化剂光催化降解MB性能增加.表征结果表明,复合光催化剂表面含有大量羧基和羟基基团,导致光催化剂表面带负电荷,从而有利于阳离子的MB的静电吸附.为了进一步验证该吸附机理,我们选择了另外两种染料分子,阳离子的罗丹明B和阴离子的甲基橙.结果显示,该光催化剂对罗丹明B同样具有较强的吸附能力和较好的光催化降解活性,但对甲基橙几乎没有吸附和光催化性能.这充分说明亚甲基蓝染料通过静电相互作用的形式吸附于催化剂表面,较好的吸附性能进一步促进了光催化剂的降解活性.为了讨论光催化机理,向反应体系中加入不同的捕获剂来研究光催化反应过程中产生的活性物种.研究显示,羟基自由基在光催化降解亚甲基蓝的反应中几乎没有作用,光生空穴发挥了次要作用,而超氧自由基在整个反应中发挥了主导作用.因此,光催化降解的机理如下:CaFe_2O_4在可见光激发下产生光生电子和空穴,电子快速转移到C材料的表面并与空气中的氧气反应生成超氧自由基,后者再与吸附在光催化剂表面的染料分子反应产生低毒或无毒的降解产物.此外,CaFe_2O_4价带上产生的空穴也可以直接将染料分子氧化成小分子产物  相似文献   

16.
构建氧空位以及附着金属单质Bi(Bi0)是增强半导体材料光吸收性能、促进半导体光生载流子分离的有效方法。通过简单的共沉淀法及氢气热还原成功制备了PO43-掺杂Bi2O2CO3附着Bi0(Bi-P-BOC)的可见光催化剂,并对其在可见光下催化降解氧氟沙星(OFX)的性能及机理进行了研究。材料表征结果表明BOC随着PO43-的均匀掺杂,可见光吸收能力增强,表面缺陷增多,比表面积增大。而随着氢气热还原,BOC表面形成 Bi0的同时也原位构建了大量的氧空位。可见光催化性能测试表明,Bi-P-BOC可以在180 min内降解约85%的OFX,降解速率为0.013 0 min-1,是BOC降解速率的8倍。Bi-P-BOC光催化降解机理表明其具有更好的可见光吸收能力,Bi0以及氧空位的存在促进了光生载流子的分离,h+是其光催化降解过程中的主要的活性氧物种(ROS),此外,1O2和·O2-也对降解有一定贡献。  相似文献   

17.
作为大气中的典型污染物之一,化石燃料燃烧产生的NO不仅会引起酸雨,还会影响人体呼吸系统.半导体光催化技术可以利用太阳能和空气中的氧气来分解环境污染物,因而得到了国内外学者的广泛关注.作为最具代表性的半导体光催化材料,TiO_2虽然具有较强的氧化能力和优异的生物相容性,但是其禁带宽度较大(3.2 eV)而只能被紫外光激发,无法充分利用太阳能.因此,开发新型可见光响应的半导体催化材料具有重要意义.Bi_2WO_6是一种独特的具有层状结构半导体光催化材料,因其具有可见光响应性能而受到了广泛关注;但是可见光响应范围窄(禁带宽度2.6?2.8 eV)以及其较快的光生载流子复合,导致Bi_2WO_6其光催化效率不高,迫切需要采取有效措施对Bi_2WO_6进行改性.贵金属(诸如金和银)纳米粒子可见光区的表面等离子体效应(SPR),可以用来增强半导体材料的可见光催化性能.但是,贵金属的价格昂贵,难以满足实际需求.近来的研究发现,非贵金属Bi同样具有类似的表面等离子体效应.因此,本文选用以乙二醇为还原剂,通过低温还原Bi(NO_3)_3的方式,在花球Bi_2WO_6表面,成功制备了沉积了Bi纳米球复合光催化次材料.本文用NO的可见光催化氧化来评价Bi/Bi_2WO_6复合材料的光催化性能的可见光催化性能,所使用的光源为可见光LED灯(λ400 nm).结果发现:(1)单一组分的Bi金属和Bi_2WO_6前驱体花球均表现出非常差的光催化活性,NO去除率分别仅为7.7%和8.6%;(2)随着Bi纳米球的负载量从0增加至10 wt%,复合材料Bi/Bi_2WO_6的NO去除效率从12.3%稳定增加至53.1%至20 wt%时开始降低.这可能是由于Bi纳米球阻碍了Bi_2WO_6对光的吸收;(3)改性后的Bi/Bi_2WO_6具有良好的可见光催化稳定性,循环使用在五次后其活性变化不大.光催化机理研究结果显示,Bi/Bi_2WO_6增强的可见光NO去除性能归因于Bi纳米球的SPR效应.在可见光照射下,Bi纳米球的SPR效应产生的电场可以显著促进Bi_2WO_6的光生载流子分离效率.同时,Bi纳米球可以快速转移Bi_2WO_6导带上的光生电子,生成超氧游离基(·O_2~?),从而抑制了光生电子和空穴的复合.Bi_2WO_6表面的空穴可以被表面吸附水捕获,产生羟基自由基(·OH).在活性氧物种·OH和·O_2~?的不断进攻作用下,NO最终被氧化.本文为宽禁带半导体的非贵金属敏化,提升其可见光催化性能解决环境问题提供了新思路.  相似文献   

18.
纳米TiO2-x光催化膜中的缺陷结构与性能关系初探   总被引:13,自引:1,他引:13  
霍爱群  谭欣 《化学通报》1998,(11):31-32
半导体TiO2由于具有较大的禁带宽度(TiO2Eg=3.2eV),常用作光化学降解反应的催化剂.利用溶胶-凝胶技术(Sol-Gel)制备薄膜型光催化剂,特别是在石英板或石英反应管壁上制备纳米级TiO2光催化剂膜已成为这一领域的研究热点[1].制备高活性光催化剂的突出问题是如何增加光生电子与空穴的产额,减少它们的复合几率,同时提高光催化膜的表面吸附能力.本实验采用溶胶-凝胶法制备出纳米级无机非整比TiO2-x膜,经过可控气氛热处理后,可在膜表面形成较多亚稳相氧空位(缺陷),为催化剂膜表面提供了更多的吸附中心和反应活性位,因此表现出较高的光催化反应活性[2].  相似文献   

19.
采用先后沉淀法制备了Ag2CO3/Bi2O2CO3(BOC)复合光催化剂. 扫描电子显微镜和透射电子显微镜表征结果表明, 尺寸为8.0~18.5 nm的Ag2CO3颗粒均匀分散于BOC纳米片表面. 两种半导体之间所形成的良好p-n异质界面效应拓宽了BOC的光吸收范围, 并有效促进了光生电子-空穴对的分离. Ag2CO3/BOC复合光催化剂的催化活性明显提高, 其中Ag2CO3含量(质量分数)为0.62%时活性最佳, 降解罗丹明B的速率常数为纯BOC的2.8倍. 结合催化过程中的活性物种研究和两种半导体的相对能带位置, 提出了p-n异质界面空间电荷层的形成以及载流子分离和迁移机制.  相似文献   

20.
烯烃异构化广泛用于合成药物、高强度材料和精细化学品.近年来,光催化烯烃异构化的发展解决了传统烯烃异构化的设备腐蚀、活性和选择性较差等问题.如Pd@TiO2和Pd配合物均可用于烯烃的光催化异构化,但仅对烯丙基苄基衍生物有效.K(o)nig等利用可见光、Co(acac)2和合适的配体实现了烯烃位置可控的异构化,但该反应仅限于末端烯烃.因此,需要开发一种简单高效的光催化烯烃异构化方法,一方面可以通过光催化烯烃异构化将末端烯烃或内烯烃转化为一个或多个位置异构化产物,将石油衍生物中存在的烯烃混合物转化为有价值的单一烯烃产品,另一方面能够大幅提高光催化烯烃异构化的效率.本文研究发现,在625 nm光照射下,氧缺陷WO3-x表现出较好的催化1-癸烯异构化活性.该催化剂不仅可以将各种链状和环状末端烯烃转化为相应的内烯烃异构体,而且能够将内烯烃混合物转化为单一末端烯烃产品.通过控制烯烃碳链的长度可以得到热力学和动力学异构化产物,当烯烃的碳数小于13时,主要得到动力学产物.在无光照时没有检测到产物,说明只有在光照下反应才能进行.WO3-x的氧缺陷使WO3-x的漫反射紫外可见(DR UV-vis)光谱在大于450 nm时出现了局域表面等离子体共振(LSPR)强吸收.不同波长光照下1-癸烯异构化反应转化率的变化趋势与WO3-x的DR UV-vis光谱一致,而且在625 nm红光照射下,1-癸烯的转化率最高达到99.4%,进一步说明反应是由光驱动的.625nm的光可以将WO3-x价带上的电子激发到缺陷能级,且该电子可以进一步被转移到WO3-x吸附的烯烃上(激发电子转移路径).为进一步研究氧缺陷对光催化烯烃异构化活性的影响,在300℃焙烧不同时间得到氧缺陷含量不等的WO3-x样品.X射线衍射谱、DR UV-vis光谱、X射线光电子能谱和电子顺磁共振光谱结果表明,随着焙烧时间的增加,催化剂中氧缺陷含量逐渐减少,其光催化1-癸烯异构化活性逐渐降低,证明催化剂中氧缺陷的存在可以提高其光催化性能.利用原位漫反射傅里叶变换红外光谱研究了氧缺陷对烯烃表面吸附和中间体形成的影响.结果 表明,WO3-x表面氧缺陷产生的不饱和W5+位点会与烯烃配位从而原位形成表面π配合物和π-烯丙基钨中间体.通过在反应体系中添加4-叔丁基邻苯二酚证明了反应是通过自由基机理进行的.综上所述,WO3-x与625 nm红光结合,实现了烯烃的光催化异构化.通过调节烯烃的碳链长度,可得到热力学和动力学产物,且该催化体系可以将石油衍生物中的内烯烃混合物转化为单一末端烯烃产品.WO3-x的氧缺陷既可以提高其光捕获能力,又可以用作光催化烯烃异构化的吸附和活化位点.本文提供了一种利用低能量光子进行烯烃高效选择性异构化的简便方法,该方法是传统烯烃异构化方法的补充.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号