首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郭俊兰  梁英华  王欢  刘利  崔文权 《化学进展》2021,33(7):1100-1114
随着能源和环境问题的日益突出,构建可持续发展、绿色环保和新型高效的能源体系,成为当今世界关注的焦点.由于太阳能清洁、低成本和环境友好等特性,利用太阳能光催化制氢成为解决能源问题的有效策略.单一的半导体光催化剂由于光的利用率低、电荷空穴易复合和缺少充足的活性位点等缺点,很难满足光催化的所有要求,常引入助催化剂来解决这一问...  相似文献   

2.
采用简单的化学还原法在g-C3N4纳米片上原位合成了一种小尺寸CoNi双金属助催化剂并研究了其光催化活性。采用X射线衍射(XRD)、透射电子显微镜(TEM)、紫外可见漫反射光谱(UV-vis DRS)、X射线光电子能谱(XPS)、光致发光(PL)、电化学阻抗(EIS)等手段对制备的CoNi/g-C3N4的理化性能进行了表征。光催化降解RhB实验表明,CoNi双金属助催化剂能有效提高g-C3N4中光生载流子的分离效率,从而提高光催化活性。当CoNi物质的量比为1:1时,CoNi/gC3N4的催化活性最高,其降解速率为0.01633 min-1,在可见光照射下比g-C3N4提高3.9倍,该光催化剂在五次循环后仍能保持良好光催化活性,该反应的主要活性物种为超氧自由基(·O2-)。  相似文献   

3.
杨秋实  胡少年  姚雅萱  林先刚  杜海威  袁玉鹏 《催化学报》2021,42(1):217-224,后插44
石墨相氮化碳是一类非金属聚合物,其光催化特性,特别是在光催化水分解反应中的应用引起了广泛关注.目前,块体石墨相氮化碳的光催化性能主要受比表面积较大、光子利用率较低等因素的制约.前期大量研究主要采用异质元素掺杂、负载助催化剂、设计缺陷、构建异质结构等策略来进一步提升光催化性能.石墨相氮化碳具有二维层状的晶体结构,理论上其形貌和显微结构会对光催化性能有显著影响.因此,本文从调节材料本征结构这一角度,报道了一种调控石墨相氮化碳层间距的方法.将三聚氰胺和氯化铵混合后,通过微波快速加热,利用氯化铵分解过程中释放氨气这一特性,破坏石墨相氮化碳层间的范德华力,增大其层间距并成功获得了薄片状结构.同时,微波加热可以实现快速升温,有效避免了电炉加热煅烧时间较长导致前驱体挥发的问题.采用扫描电子显微镜、氮气等温吸脱附曲线、X射线衍射、红外光谱、紫外-可见吸收光谱、荧光光谱、光催化制氢和电化学测试等表征手段,研究了不同氯化铵含量对石墨相氮化碳层间距的作用以及调控层间距对光催化活性的影响.通过扫描电子显微镜观察,与三聚氰胺加热所得到的块状结构相比,适量的氯化铵(氯化铵质量比为11%)和三聚氰胺在微波快速加热处理后可以获得薄片状结构.氮气等温吸脱附曲线进一步证实了显微结构的变化,薄片状结构和块体结构相比BET比表面积提升了2.1倍.X射线衍射分析证实随着氯化铵含量的增加,(002)衍射峰位置左移,意味着层间距逐渐增大.红外光谱则没有明显的变化,说明氯化铵和三聚氰胺共烧并不会改变石墨相氮化碳的化学结构.光催化制氢测试发现,添加适量的氯化铵和三聚氰胺共烧可以明显提升光催化制氢性能.与块体材料(4.67μmol h?1)相比,层间距增大后光催化活性提升了约5倍(23.6μmol h?1).结合紫外-可见吸收光谱和电化学莫特肖特基测试,我们发现层间距增大后可以显著提升石墨相氮化碳的可见光吸收性质,减小带宽,并获得更为合适的能级结构.且样品的导电性能得到改善,有利于电荷传输,光生电子空穴对的分离效率进一步提升.以上结果说明调控石墨相氮化碳的层间距是一种简单有效提升催化剂光催化性能的手段.  相似文献   

4.
杨秋实  胡少年  姚雅萱  林先刚  杜海威  袁玉鹏 《催化学报》2021,42(1):217-224,后插44
石墨相氮化碳是一类非金属聚合物,其光催化特性,特别是在光催化水分解反应中的应用引起了广泛关注.目前,块体石墨相氮化碳的光催化性能主要受比表面积较大、光子利用率较低等因素的制约.前期大量研究主要采用异质元素掺杂、负载助催化剂、设计缺陷、构建异质结构等策略来进一步提升光催化性能.石墨相氮化碳具有二维层状的晶体结构,理论上其形貌和显微结构会对光催化性能有显著影响.因此,本文从调节材料本征结构这一角度,报道了一种调控石墨相氮化碳层间距的方法.将三聚氰胺和氯化铵混合后,通过微波快速加热,利用氯化铵分解过程中释放氨气这一特性,破坏石墨相氮化碳层间的范德华力,增大其层间距并成功获得了薄片状结构.同时,微波加热可以实现快速升温,有效避免了电炉加热煅烧时间较长导致前驱体挥发的问题.采用扫描电子显微镜、氮气等温吸脱附曲线、X射线衍射、红外光谱、紫外-可见吸收光谱、荧光光谱、光催化制氢和电化学测试等表征手段,研究了不同氯化铵含量对石墨相氮化碳层间距的作用以及调控层间距对光催化活性的影响.通过扫描电子显微镜观察,与三聚氰胺加热所得到的块状结构相比,适量的氯化铵(氯化铵质量比为11%)和三聚氰胺在微波快速加热处理后可以获得薄片状结构.氮气等温吸脱附曲线进一步证实了显微结构的变化,薄片状结构和块体结构相比BET比表面积提升了2.1倍.X射线衍射分析证实随着氯化铵含量的增加,(002)衍射峰位置左移,意味着层间距逐渐增大.红外光谱则没有明显的变化,说明氯化铵和三聚氰胺共烧并不会改变石墨相氮化碳的化学结构.光催化制氢测试发现,添加适量的氯化铵和三聚氰胺共烧可以明显提升光催化制氢性能.与块体材料(4.67μmol h?1)相比,层间距增大后光催化活性提升了约5倍(23.6μmol h?1).结合紫外-可见吸收光谱和电化学莫特肖特基测试,我们发现层间距增大后可以显著提升石墨相氮化碳的可见光吸收性质,减小带宽,并获得更为合适的能级结构.且样品的导电性能得到改善,有利于电荷传输,光生电子空穴对的分离效率进一步提升.以上结果说明调控石墨相氮化碳的层间距是一种简单有效提升催化剂光催化性能的手段.  相似文献   

5.
6.
周飞 《分子催化》2023,37(4):397-404
石墨相氮化碳(g-C3N4)是一类非金属聚合物半导体材料, 具有良好的可见光响应、 优异的化学稳定性和可调节的能带结构, 在光催化分解水制氢、 空气净化、 环境修复等领域有着广阔的应用前景. 目前, g-C3N4光催化分解水的研究主要聚焦析氢半反应, 而牺牲试剂的氧化反应以及光生空穴则未被加以利用. 光催化苯甲醇氧化反应具有较高的选择性, 在光催化制氢的同时还能够获得苯甲醛. 我们结合最新国内外研究成果, 系统地综述了g-C3N4在光催化苯甲醇氧化耦合制氢方面的应用, 从分子改性、 显微结构及缺陷调控、 非金属元素掺杂、 金属负载和复合材料设计等5个方面介绍了g-C3N4光催化苯甲醇氧化提升性能的研究策略. 重点总结了g-C3N4的结构和光生载流子分离效率对催化性能的影响, 并对g-C3N4光催化苯甲醛氧化耦合制氢的后续发展进行了展望.  相似文献   

7.
吕功煊 《分子催化》2011,(2):166-179
本文讨论了石墨烯在光催化诱导制氢体系中的应用,以期总结新型材料石墨烯在光电转化和光催化制氢中的应用最新进展,为了解碳材料在光催化制氢领域的应用参考。  相似文献   

8.
江静  曹少文  胡成龙  陈春华 《催化学报》2017,(12):1981-1989
利用半导体光催化技术将太阳能转化为清洁化学能源是解决能源危机和环境问题的最有潜力的途径之一.过去几十年,许多半导体包括氧化物、硫化物和氮化物均表现出光催化活性.然而,半导体光催化的实际应用仍然受制于其较低的太阳能转化效率.解决上述问题的方法之一是发展高效的可见光光催化制氢材料.近年来,石墨相氮化碳(g-C_3N_4)作为一种聚合物半导体材料,受到了光催化研究人员的广泛关注.g-C_3N_4具有可见光吸收能力、合适的导带价带位置、良好的热稳定性和化学稳定性,且制备方法简单和结构易调控,是一种极具潜力的光催化制氢材料.然而g-C_3N_4仍然仅能吸收波长450 nm以下的光,且其光生电子和空穴极易复合,因而光催化制氢效率较低.目前,研究人员采用了多种改性方法来增强g-C_3N_4的光催化性能,其中通过元素掺杂进行能带结构调控是一种非常有效的策略.而碱金属原子(Li,Na和K)被认为可有效进入g-C_3N_4的内部结构,通过引入缺陷来拓宽g-C_3N_4的光吸收范围和提高光生电荷的分离效率.不过到目前为止,尚未见系统的比较研究来深入理解不同碱金属元素掺杂的g-C_3N_4在可见光光催化制氢中的性能差异.本文采用X射线衍射(XRD)、氮气吸附-脱附测试、紫外可见漫反射光谱(UV-visDRS)、时间分辨荧光光谱(TRPL)、X射线光电子能谱(XPS)、光电化学测试和光催化制氢测试等表征和测试手段比较研究了不同碱金属元素掺杂的g-C_3N_4在结构、光学性质、能带结构、电荷转移能力和光催化性能等方面的差异.XRD结果表明,碱金属掺杂可导致g-C_3N_4的层间距离增大,且碱金属原子半径越大,g-C_3N_4的层间距离越大.氮气吸附-脱附测试结果表明,碱金属掺杂可提高g-C_3N_4的比表面积,其中Na掺杂的最高.UV-vis DRS和XPS谱结果表明,依Li,Na,K的顺序,碱金属掺杂导致g-C_3N_4带隙逐渐变窄,使得可见光吸收能力逐渐增强,且其导带和价带位置逐渐下移.TRPL和光电化学测试结果显示,碱金属掺杂有效抑制了g-C_3N_4的光生载流子复合和促进了光生载流子的转移,其中Na掺杂的g-C_3N_4的光生载流子利用效率最高.可见光光催化制氢实验表明,碱金属掺杂显著提升了g-C_3N_4的光催化性能,其中以Na掺杂的g-C_3N_4性能最佳,其产氢速率(18.7mmol h–1)较纯的g-C_3N_4(5.0mmol h–1)可提高至3.7倍.由此可见,g-C_3N_4的掺杂改性是一个对其微结构和能带结构的优化调控过程,最终获得最优的光催化性能.  相似文献   

9.
能源问题一直是关乎人类命运的重要问题,光催化制氢被认为是有望解决这一问题的潜在途径之一.金属有机框架(MOFs)由于其多孔、高比表面积、带隙可调等特性,在光催化制氢方面得到了广泛关注.我们综述了近些年来在金属-有机骨架材料光催化制氢领域的各种改性方法 ,包括修饰有机连接配体、修饰金属中心、金属纳米粒子沉积、染料敏化与其他功能材料结合等.概括了改性后的MOFs光催化制氢性能,指出了MOFs基光催化制氢存在的问题和可能的解决思路,并展望了MOFs基光催化制氢剂的绿色未来.  相似文献   

10.
化石能源的发现和应用是工业文明快速发展的基础.然而,化石燃料的过渡开发和消耗导致能源短缺和环境污染问题日益突出.因此,迫切需要采用清洁能源替代化石能源.其中,氢气(H2)因具有热值高、无污染等优点而被认为是最有前途的清洁能源之一.目前,应用较多且比较成熟的制氢技术有电催化法、部分氧化法、自热重整法、甲醇重整法、蒸汽重整法和生物法.但是,这些技术的能耗和成本都比较高.光催化制氢技术可实现太阳能的转化和利用,被认为是解决能源短缺和环境污染问题的有效方法之一,受到广泛关注.光催化制氢主要采用贵金属催化剂,但贵金属稀缺且成本高,严重限制了其大规模应用.因此,迫切需要寻找一种便宜、高效和稳定的光催化制氢催化剂.碳纳米结构材料(CNMs)具有优异的结构和半导体性能,包括良好的导电性、较大的比表面积、较好的热稳定性和化学稳定性,可以有效地参与光催化制氢.此外, CNMs和光催化剂的结合可以增强反应物的吸附位点和活性中心,加速电荷分离和传输,抑制光激发的电子-空穴对的复合.同时, CNMs可以减少催化剂颗粒的聚集,改善催化剂颗粒的分布.CNMs还具有光敏性或光热效应,可以大大提高光催化制氢的效率.特别...  相似文献   

11.
淡猛  蔡晴  向将来  李筠连  于姗  周莹 《化学进展》2020,32(7):917-926
硫化氢(H2S)作为一种剧毒、恶臭的强腐蚀性气体,广泛来源于人类活动和自然界,对动植物生存和环境都具有较大的危害。光催化分解H2S制氢是一种理想的H2S处理技术,可以同时实现H2S的转移和清洁能源氢气的产生。近年来,金属硫化物由于其优异的可见光响应、恰当的能带结构和对H2S有高的稳定性,因此被广泛地应用于光催化分解H2S制氢。本文对近年来国内外金属硫化物驱动H2S资源化利用制氢领域取得的重要进展进行了概述和总结,探讨了不同反应媒介下光催化分解H2S制氢机制;特别关注了一些为实现高效稳定光催化H2S资源化利用制氢的优异调控策略;最后,对H2S资源化利用的挑战和前景进行了展望。  相似文献   

12.
半导体光催化是一种利用半导体将太阳能转换为高能化学能的绿色技术,在可再生清洁能源生产和污染物修复领域有着巨大的应用前景.石墨相氮化碳(g-C3N4)作为一种环境友好的非金属半导体,因其制备工艺简单、来源丰富、热稳定性和化学稳定性好、可见光吸收范围及特殊的电子性能而受到广泛关注.但一般常用氮源前驱体如二氰二胺、三聚氰胺等...  相似文献   

13.
林珍珍  林励华  王心晨 《催化学报》2015,(12):2089-2094
石墨相氮化碳是一种聚合物半导体材料(带隙宽度约为2.7 eV),具有独特的和可调控的光学和电子性质,能够作为半导体光催化剂用于驱动一系列光催化反应,在能源和环境领域具有潜在应用前景.利用简单的热聚合法,在空气或氮气中高温焙烧(500?700 oC)富氮前驱体可以合成氮化碳聚合物.通常,这些富氮前驱物含有三嗪单元(如三聚氰胺和三聚硫氰酸原料)或在热聚合过程中会生成三嗪单元(如氰胺和二聚氰胺原料).由于热聚合反应过程受到反应动力学限制,氮化碳半导体材料的聚合度和结晶度不高,且比表面积较小,使其在光催化反应过程中存在传质作用差、激子结合能高和光生载流子复合严重等问题,不利于光催化反应进行.本课题组发展了氮化碳光催化剂的合成新方法(高温氮化),该方法抑制了热聚合过程中三嗪中间体的快速分解,促进了氮化碳的聚合.我们将所制备的催化剂用于光催化分解水产氢反应,发现高温氮热反应制备的氮化碳样品(CNC)的催化性能显著优于传统氮化碳.傅立叶红外光谱(FT-IR)、X射线光电子能谱(XPS)和13C固体核磁共振谱(13C NMR)的表征结果表明, CNC光催化剂具有与传统氮化碳类似的化学结构和组成(七嗪基本结构单元).然而,对于高温氮化热聚合方法制备得到的七嗪基氮化碳聚合物光催化性能增强的原因并不清楚.基于此,本文采用X射线粉末衍射(XRD)、场发射透射电镜(FE-TEM)、原子力显微镜(AFM)和比表面积(BET)测试等手段研究了不同制备方法得到的氮化碳基光催化剂在可见光光催化分解水产氢反应中催化性能差异的原因. XRD结果表明, CNC系列样品的XRD谱与体相氮化碳相似,具有石墨相氮化碳特征的层间堆积(002)衍射峰和面内重复单元(100)衍射峰.与传统石墨相氮化碳相比, CNC在27o附近的衍射峰发生明显偏移.其(002)晶面衍射峰从27.5o增大到27.8o,使(002)晶面间距从0.325 nm减小到0.322 nm.进一步观察发现, CNC系列样品与体相氮化碳相比,其衍射峰出现明显窄化,且衍射强度增加,表明由高温氮化热聚合法制得的产物具有更好的结晶度.通常,半导体晶体结构缺陷会阻碍光生载流子的快速迁移和分离,提高氮化碳聚合物的结晶度可有效改善其光催化氧化还原反应. TEM结果表明,传统石墨相氮化碳是由大块的(厚重的)片层堆积形成,而高温氮化合成的CNC-3则是由纳米薄片组成,这种形貌差异可能是因为活性前驱体(氨气和三聚氰氯)的使用改善了反应动力学过程.另外, CNC-3纳米片上有一些地方发生卷曲,这种卷曲能够有效减小纳米片表面张力,降低其表面能,使纳米片结构稳定存在,类似于石墨烯中的碳卷曲行为. CNC-3的AFM结果进一步证实形成了纳米片结构,其厚度均匀,约为3–6 nm.我们构筑的这种纳米薄片结构具有高度敞开的平面结构,有利于光生电子-空穴从体相迁移到表面,可有效提高半导体的光催化性能. BET结果表明, CNC系列样品的比表面积均比传统g-C3N4的比表面积大,且随焙烧温度升高而增大. CNC光催化剂增大的比表面积改善了多相光催化反应的传质扩散过程,增加了表面反应活性位,有利于提高氮化碳聚合物的光催化活性.  相似文献   

14.
以草酸为氧源,二聚氰胺和尿素为原料,采用两步热聚合方式合成氧掺杂氮化碳纳米片催化剂(CNO)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、X射线光电子能谱分析(XPS)、荧光光谱(PL)及电化学测试等技术对催化剂进行结构表征分析。在可见光照射下通过分解水制氢反应对CNO的光催化还原性能进行评价。结果表明,草酸中的O元素通过取代氮化碳三嗪环结构中N原子直接键合到sp~2杂化碳上,形成O掺杂CNO。经O掺杂改性后的氮化碳具有良好的层状堆积结构,可见光吸收性明显提高,同时禁带宽度降低。O掺杂的引入加速了光生电子-空穴对的分离和传输,能大幅度提高氮化碳的光催化分解水制氢性能,在可见光照下达88.6μmol·h~(-1),是未掺杂CN的3.91倍。  相似文献   

15.
吕功煊 《分子催化》2019,33(6):461-485
在光催化分解水产氢的过程中,Pt等助催化剂在催化产生氢的同时也会诱导催化氢气和氧气重新复合为水的逆反应,严重降低了悬浮体系光催化全分解水产氢的效率。本文综述了近年来在逆反应抑制方面的研究进展,总结和对比分析了各种抑制逆反应策略的特点,并对这些方法的应用于悬浮体系光催化全分解水制氢的前景进行了展望。  相似文献   

16.
光催化技术被认为是将太阳能转化为可存储化学能的有效策略. 通过在半导体光催化剂上负载高度分散的金属活性位点(如单原子、 团簇等), 能够显著促进光催化过程中物质和电荷的转移, 提高光催化反应的效率. 光催化过程中真正的活性位点是单原子还是团簇仍存在较大争议. 本文概述了单原子光催化的最新研究进展, 在此基础上对单原子和团簇作为活性位点的竞争与协同作用进行了分析与讨论, 并探论了用于鉴别单原子和团簇光催化活性位点的可靠方法. 最后, 对单原子与团簇协同的光催化在水分解和CO2还原等太阳能-化学能转化领域的未来发展进行了展望.  相似文献   

17.
以尿素和二氰二胺为原料热聚合得到石墨相氮化碳,分别采用直接二次煅烧和熔盐离子热后热处理在不同温度下对产物进行后热处理,得到氮缺陷氮化碳CN和CNS。利用X射线衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)、透射电镜(TEM)等手段对所制备样品进行表征和分析,探讨了不同热处理温度和加热方法对催化剂微观聚合结构的影响;同时以光解水制氢为测试方法,考察了催化剂的可见光催化性能。结果表明,熔盐离子热更有利于氮化碳的层间聚合,得到高结晶度材料;在面内七嗪聚合单元中引入氮缺陷,产生末端氰基,优化电荷密度分布,增强电荷流动性;克服粒子尺寸效应,扩展催化剂的光吸收范围;当后热处理温度为500℃时,制备的CNS-500表现出优异的光解水制氢活性,是同温度下直接热处理得到的催化剂的3.84倍。  相似文献   

18.
王蒙  马建泰  吕功煊 《分子催化》2019,33(5):461-485
在光催化全分解水产氢的过程中, Pt等助催化剂在催化产生氢的同时也会诱导催化氢气和氧气重新复合为水的逆反应,严重降低了悬浮体系光催化全分解水产氢的效率.我们综述了近年来在逆反应抑制方面的研究进展,总结和对比分析了各种抑制逆反应策略的特点,并对将这些方法应用于悬浮体系光催化全分解水制氢的前景进行了展望.  相似文献   

19.
以三聚氰胺为原料, 氧化硼为硼源, 碘化铵为碘源, 采用一步煅烧法合成了硼、 碘共掺杂氮化碳催化剂(CNBI). 利用X射线衍射仪、 透射电子显微镜、 傅里叶变换红外光谱仪、 X射线光电子能谱仪、 紫外-可见光分光光度计及电化学工作站等对样品进行表征和分析, 利用可见光照射下光解水制氢反应来评价其催化性能. 研究结果表明, B, I元素均匀分散掺杂入氮化碳共轭骨架形成B, I共掺杂CN半导体材料. 相比于未掺杂材料CN, B, I共掺杂CN样品禁带宽度略微降低, 光吸收能力增强, 光生电子-空穴对的分离效率提高, 这主要归因于B, I元素的电负性差异有助于氮化碳光生电子和空穴的重新分散. 共掺杂样品CNBI(0.1, 0.3)具有最佳光解水制氢性能, 在可见光照射下产氢速率达104.3 μmol/h, 分别是纯CN(22.74 μmol/h)的4.6倍, B掺杂氮化碳CNB(0.1)(51.92 μmol/h) 的2.0倍及碘掺杂氮化碳CNI(0.3)(33.37 μmol/h) 的3.1倍.  相似文献   

20.
本文通过在双氰胺前驱体中添加聚乙二醇,在缩聚过程实现碳掺杂形成含氮空位的g-C3N4光催化剂。通过X射线衍射(XRD)、红外光谱(FTIR)、光电子能谱(XPS)、紫外-可见吸收光谱(UV-Vis)和荧光谱(FL)等表征手段,考察了原位聚合碳掺杂形成氮空位对g-C3N4物相结构、组分与化学态、光吸收性能及光催化活性的影响。研究结果表明,采用该方法可实现原位聚合碳掺杂,有效拓展g-C3N4的可见光吸收至850 nm,在紫外-可见光与可见光照射下光降解RhB及光催化产氢性能均显著提高,尤其可见光条件下的性能提升更为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号