首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On bases of the direct method developed by Clarkson and Kruskal [J. Math. Phys. 27 (1989) 2201], the (2+1)-dimensional nonisospectral Kadomtsev-Petviashvili (KP) equation has been reduced to three types of (1+1)-dimensional partial differential equations. We focus on solving the third type of reduction and dividing them into three subcases, from which we obtain rich solutions including some arbitrary functions.  相似文献   

2.
The (2 1)-dimensional Boussinesq equation and (3 1)-dimensional KP equation are studied by using the extended Jacobi elliptic-function method. The exact periodic-wave solutions for the two equations are obtained.  相似文献   

3.
In this article, we study the (2+1)-extension of Burgers equation and the KP equation. At first, based on a known Bäcklund transformation and corresponding Lax pair, an invariance which depends on two arbitrary functions for (2+1)-extension of Burgers equation is worked out. Given a known solution and using the invariance, we can find solutions of the (2+1)-extension of Burgers equation repeatedly. Secondly, we put forward an invariance of Burgers equation which cannot be directly obtained by constraining the invariance of the (2+1)-extension of Burgers equation. Furthermore, we reveal that the invariance for finding the solutions of Burgers equation can help us find the solutions of KP equation. At last, based on the invariance of Burgers equation, the corresponding recursion formulae for finding solutions of KP equation are digged out. As the application of our theory, some examples have been put forward in this article and some solutions of the (2+1)-extension of Burgers equation, Burgers equation and KP equation are obtained.  相似文献   

4.
In this paper, an explicit N-fold Darboux transformation with multi-parameters for both a (1+1)- dimensional Broer-Kaup (BK) equation and a (1+1)-dimensional high-order Broer-Kaup equation is constructed with the help of a gauge transformation of their spectral problems. By using the Darboux transformation and new basic solutions of the spectral problems, 2N-soliton solutions of the BK equation, the high-order BK equation, and the Kadomtsev-Petviashvili (KP) equation are obtained.  相似文献   

5.
Recently,a new decomposition of the (2 1)-dimensional Kadomtsev-Petviashvili(KP) equation to a (1 1)-dimensional Broer-Kaup (BK) equation and a (1 1)-dimensional high-order BK equation was presented by Lou and Hu.In our paper,a unified Darboux transformation for both the BK equation and high-order BK equation is derived with the help of a gauge transformation of their spectral problems.As application,new explicit soliton-like solutions with five arbitrary parameters for the BK equation,high-order BK equation and KP equation are obtained.  相似文献   

6.
Using the extension homogeneous balance method,we have obtained some new special types of soliton solutions of the (2+1)-dimensional KdV equation.Starting from the homogeneous balance method,one can obtain a nonlinear transformation to simple (2+1)-dimensional KdV equation into a linear partial differential equation and two bilinear partial differential equations.Usually,one can obtain only a kind of soliton-like solutions.In this letter,we find further some special types of the multisoliton solutions from the linear and bilinear partial differential equations.  相似文献   

7.
In this paper, using the generalized G'/G-expansion method and the auxiliary differential equation method, we discuss the (2+1)-dimensional canonical generalized KP (CGKP), KdV, and (2+1)-dimensional Burgers equations with variable coefficients. Many exact solutions of the equations are obtained in terms of elliptic functions, hyperbolic functions, trigonometric functions, and rational functions.  相似文献   

8.
In this paper, new extended Grammian determinant solutions to a (3 + 1)-dimensional KP equation are presented by using Hirora's bilinear method, and a broad set of suftlcient conditions of systems of linear partial differential equations is given. Moreover, some special solutions of the representative systems are obtained through a systematic analysis.  相似文献   

9.
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.  相似文献   

10.
With the aid of symbolic computation system Maple, many exact solutions for the (3+1)-dimensional KP equation are constructed by introducing an auxiliary equation and using its new Jacobi elliptic function solutions, where the new solutions are also constructed. When the modulus m → 1 and m →0, these solutions reduce to the corresponding solitary evolution solutions and trigonometric function solutions.  相似文献   

11.
In this paper, two novel methods used to solve (1+1) and (2+1)-dimensional completely integrable equations are proposed. The methods are applied to handle the KdV and Kadomtsev–Petviashvili (KP) equations with variable coefficients, and the general forms of new multi-soliton solutions are formally obtained, respectively. In addition, the new multi-soliton solution is suitable to two different type KP equations. Comparing with the Hirota’s method, the results show that new methods are straightforward handling the KdV and KP equations without conjecturing the transformation and good in dealing the equations with variable coefficients.  相似文献   

12.
Using the extension homogeneous balance method,we have obtained some new special types of soliton solutions of the (2 1)-dimensional KdV equation.Starting from the homogeneous balance method,one can obtain a nonlinear transformation to simple (2 1)-dimensional KdV equation into a linear partial differential equation and two bilinear partial differential equations.Usually,one can obtain only a kind of soliton-like solutions.In this letter,we find further some special types of the multisoliton solutions from the linear and bilinear partial differential equations.``  相似文献   

13.
利用埃尔米特变换和特殊的截断展开法求出(2+1)-维Wick类型随机广义KP方程的类孤子解. 这种方法的基本思想是通过埃尔米特变换把(2+1)-维Wick类型随机广义KP方程变成的(2+1)-维广义变系数KP方程,利用特殊的截断展开方法求出方程的解,然后通过埃尔米特的逆变换求出方程的随机解.  相似文献   

14.
In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a given curve y^2 = f(x) whose genus is three. We observe that this method generalizes the auxiliary method, and can obtain the hyperelliptic functions solutions.  相似文献   

15.
The (2 1)-dimensional Boussinesq equation and (3 1)-dimensional KP equation are studied by using the extended Jacobi elliptic-function method. The exact periodic-wave solutions for the two equations are obtained.  相似文献   

16.
A simple algebraic transformation relation of a special type of solution between the (3 1)-dimensional Kadomtsev-petviashvili(KP) equation and the cubic nonlinear Klein-Gordon equation (NKG) is established.Using known solutions of the NKG equation,we can obtain many soliton solutions and periodic solution of the (3 1)-dimensional KP equation.  相似文献   

17.
By the application of the extended homogeneous balance method, we derive an auto-Bäcklund transformation (BT) for (2+1)-dimensional variable coefficient generalized KP equations. Based on the BT, in which there are two homogeneity equations to be solved, we obtain some exact solutions containing single solitary waves.  相似文献   

18.
In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.  相似文献   

19.
For describing various complex nonlinear phenomena in the realistic world, the higher-dimensional nonlinear evolution equations appear more attractive in many fields of physical and engineering sciences. In this paper, by virtue of the Hirota bilinear method and Riemann theta functions, the periodic wave solutions for the (2+1)-dimensional Boussinesq equation and (3+1)-dimensional Kadomtsev Petviashvili (KP) equation are obtained. Furthermore, it is shown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.  相似文献   

20.
In this paper, we first consider exact solutions for Lienard equation with nonlinear terms of any order. Then, explicit exact bell and kink profile solitary-wave solutions for many nonlinear evolution equations are obtained by means of results of the Lienard equation and proper deductions, which transform original partial differential equations into the Lienard one. These nonlinear equations include compound KdV, compound KdV-Burgers, generalized Boussinesq, generalized KP and Ginzburg-Landau equation. Some new solitary-wave solutions are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号