首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
范喆  马晓萍  李尚赫  沈帝虎  朴红光  金东炫 《物理学报》2012,61(10):107502-107502
为了实现基于磁畴壁运动的自旋电子学装置, 掌握磁畴壁动力学行为是重要争论之一.研究了在外磁场驱动下L-型纳米铁磁线磁畴壁的动力学行为. 通过微磁学模拟,在各种外磁场的驱动下考察了纳米铁磁线磁畴壁的动力学特性; 在较强外磁场的驱动下, 在不同厚度纳米线上考察了纳米线表面消磁场对磁畴壁动力学行为的影响. 为了进一步证实消磁场对磁畴壁动力学的影响, 在垂直于纳米线表面的外磁场辅助下分析了磁畴壁的动力学行为变化. 结果表明, 随着纳米线厚度和外驱动磁场强度的增加, 增强了纳米线表面的消磁场的形成, 使得磁畴壁内部自旋结构发生周期性变化, 导致磁畴壁在纳米线上传播时出现Walker崩溃现象. 在垂直于纳米线表面的外磁场辅助下, 发现辅助磁场可以调节消磁场的强度和方向. 这意味着利用辅助磁场可以有效地控制纳米铁磁线磁畴壁的动力学行为.  相似文献   

2.
Magnetization reversal in ferrite-garnet films placed in an ac magnetic field, bringing about the formation of metastable dynamic domains with sizes exceeding those of quasi-static domains by an order of magnitude or greater, was studied using a stroboscopic method. The formation of giant dynamic domains (GDDs) is due to the finite domain wall velocity and depends on the density of domain nucleation centers. It was shown that the GDD comblike boundary forms during the part of a field period near the moment of field polarity change. GDDs arise when the dynamic hysteresis loop shape changes from a triangle to an ellipse.  相似文献   

3.
Direct observation of current-induced propagation of purely transverse magnetic domain walls with spin-polarized scanning electron microscopy is reported in Fe30Ni70 nanowires. After propagation, the domain walls keep their transverse nature but switch polarity in some cases. For uniform Ni70Fe30 wires, the effect is random and illustrates domain-wall propagation above the Walker threshold. In the case of Ni{70}Fe_{30}/Fe wires, the transverse magnetization component in the wall is entirely determined by the polarity of the current pulse, an effect that is not reconciled by present theories even when taking into account the nonuniform Oersted field generated by the current.  相似文献   

4.
We have experimentally studied micrometer-scale domain wall (DW) motion driven by a magnetic field and an electric current in a Co/Pt multilayer strip with perpendicular magnetic anisotropy. The thermal activation energy for DW motion, along with its scaling with the driving field and current, has been extracted directly from the temperature dependence of the DW velocity. The injection of DC current resulted in an enhancement of the DW velocity independent of the current polarity, but produced no measurable change in the activation energy barrier. Through this analysis, the observed current-induced DW velocity enhancement can be entirely and unambiguously attributed to Joule heating.  相似文献   

5.
Possible steady-state magnetization distributions in a domain wall are found in a weak ferromagnet subjected to an ac magnetic field. The character of the rotation of the magnetization vector in the domain wall is determined. It is predicted that domain structures can be rearranged and reoriented under an ac magnetic field.  相似文献   

6.
The domain wall (DW) velocity above the Walker field drops abruptly with increasing magnetic field, because of the so-called Walker breakdown, where the DW moves with a precessional mode. On applying the higher field, the DW velocity again starts to increase gradually. We report the DW propagation around this local minimum regime in detail, investigated through the time-resolved electrical detection technique, with a magnetic tunnel junction. Just above the Walker field, we succeeded in detecting the precessional motion of the DW in a real-time regime, while a different mode appeared around the local minimum of the DW velocity.  相似文献   

7.
The stroboscopic method was applied to study the evolution of dynamic spiral domains in garnet ferrite films in an ac magnetic field. The spiral-domain shape was shown to change significantly within a field period; the basic shape transformations take place in the phase range ?π/4 to +π/4 with respect to the polarity inversion time. During the spiral-domain formation or decay, the area and shape of a hysteresis loop of the film region containing the domain gradually change. The upper boundary of the frequency range in which spiral domains form was established to be associated with transformations of the domain wall structure.  相似文献   

8.
Investigation of surface domain walls motion in Co-rich magnetic microwires has been performed in circular and axial magnetic fields. The dc axial magnetic field acceleration of the domain wall motion related to the influence of the axial field on the structure of the moving domain wall has been discovered. Pulsed axial magnetic field induced unidirectional motion of surface domain wall also has been found.  相似文献   

9.
Forced motion of a domain wall in the presence of fluctuations of external magnetic field and those of the parameters of the magnetic medium is studied. Calculations for the models of magnetic systems described by the sine-Gordon and Landau-Lifshitz equations are presented. It is shown that the driven motion of domain walls is characterized by the time-independent velocity distribution function which is used to calculate various statistical characteristics of the domain wall. Analysis of the mean velocity of the steady motion of the domain wall leads to the conclusion that the presence of a fluctuating magnetic field results in an increase of the effective relaxation constant of the magnetic system. In case of the sine-Gordon model the mean radiation power accompanying the forced motion of the domain wall is calculated. Inelastic interactions of two domain walls of opposite polarities are described.  相似文献   

10.
We have used time-resolved x-ray magnetic circular dichroism combined with photoemission electron microscopy (XMCD-PEEM) to investigate the layer-resolved microscopic magnetization reversal in FeNi/X/Co (with X=Cu, Al2O3) trilayer systems. These measurements were performed in pump-probe mode, synchronizing magnetic pulses with synchrotron x-ray pulses. The good magnetic contrast observed for most samples reveals that in many cases the magnetization reversal is reproducible. We have used the measurements to obtain domain wall propagation speeds as a function of applied magnetic field, and to investigate the influence of domain wall interactions on the magnetic switching.  相似文献   

11.
Magnetization reversal process and magnetoresistance (MR) hysteresis of single domain permalloy nanowires are numerically investigated by using OOMMF. It is shown that the abrupt jumps in the magnetoresistance are due to the domain formation and domain wall propagation so that a magnetic domain suddenly switches from one state into another. A nonmonotonic angular dependence of the jump (switching) field is found. Coherent rotation mode is responsible for the smooth variation of MR curves. The nucleation pattern of newly born domains depends on the tilted angle of external field.  相似文献   

12.
By micromagnetic simulation, we show that faster propagation of 360° domain wall in magnetic nanostrips under spin-polarized currents in conjunction with out-of-plane magnetic fields can be obtained. Without magnetic field, the annihilation process of 360° domain wall is irreversible when spin-polarized current velocity above about 220 m/s. The annihilation of 360° domain wall can be suppressed by an out-of -plane magnetic field and domain wall speed can exceed 1500 m/s at large current density. This is different from the case exhibited in 180° domain wall. The underlying mechanism is investigated by changing the state of 360° domain wall and the direction of out-of-plane field.  相似文献   

13.
The dynamics of magnetic domain wall motion in the FeNi layer of a FeNi/Al2O3/Co trilayer has been investigated by a combination of x-ray magnetic circular dichroism, photoelectron emission microscopy, and a stroboscopic pump-probe technique. The nucleation of domains and subsequent expansion by domain wall motion in the FeNi layer during nanosecond-long magnetic field pulses was observed in the viscous regime up to the Walker limit field. We attribute an observed delay of domain expansion to the influence of the domain wall energy that acts against the domain expansion and that plays an important role when domains are small.  相似文献   

14.
The boundary-value problem of the magnetoelastic wave interaction with a moving domain wall in a ferromagnetic crystal is solved in the nonexchange magnetostatic approximation with allowance for the external magnetic field. It is shown that the difference introduced by magnetic field between the ferromagnetic resonance frequencies of the domains does not cause any noticeably departure of the refraction characteristics of reflected and transmitted waves from those observed at zero frequency mismatch. By contrast, the magnitudes of the transmission and reflection coefficients strongly depend on the external magnetic field and on the mobility of the domain wall. The dependence of the magnitude of the reflection coefficient on the external magnetic field at a fixed angle of shear wave incidence is found to possess two ferromagnetic resonance peaks. The positions and heights of the peaks may vary depending on the mobility of the domain wall.  相似文献   

15.
We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.  相似文献   

16.
磁性薄膜畴壁短波长自旋波模式激发   总被引:2,自引:0,他引:2       下载免费PDF全文
陈善宝  张志强 《物理学报》1996,45(12):2068-2072
研究约束在磁性薄膜畴壁中的自旋波Winter模式及其激励方式.用坡莫合金磁性栅格将高频均匀磁场转换成与自旋波Winter模式在时间频率和空间波长都匹配的磁场,从而实现相互间的有效耦合.采用锁相放大技术观测到了几百兆赫自旋波Winter模式微分吸收峰 关键词:  相似文献   

17.
Motion of an isolated domain wall in a double-layer uniaxial magnetic film, where the film layers differ in characteristic length, saturation magnetization and damping parameter, is investigated by solving the Slonczewski equation. A planar magnetic field is applied normal to the domain-wall plane. The dependences of the threshold field and limiting velocity of disruption of the steady-state motion of the domain wall on the planar magnetic field value are obtained. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 60–63, December, 2008.  相似文献   

18.
Experimental and theoretical investigations of solitary domain wall dynamics in an yttrium orthoferrite plate under the action of a pulse magnetic field were carried out. The investigations are performed under conditions in which the change in the gradient magnetic field is comparable to the magnitude of the pulse magnetic field shifting the domain walls when the latter are displaced from their equilibrium position.  相似文献   

19.
The interaction of a vortex-like domain wall moving in an external magnetic field with a three-dimensional periodic chain of cubic volumes with high values of the saturation magnetization and magnetic anisotropy constant has been investigated theoretically. It has been found that the result of the interaction depends on the initial distance between the wall and the region of inhomogeneity of magnetic parameters at the moment of turning on the external magnetic field. The pinning of domain walls near the regions with high values of the saturation magnetization and magnetic anisotropy constant has been investigated, and the anisotropy of the corresponding depinning fields has been revealed. The method of investigation is the numerical micromagnetic simulation.  相似文献   

20.
Explicit solutions are derived for several phenomenological models of magnetization reversal in thin ferromagnetic films driven by a sawtooth magnetic field. For a domain wall velocity that is linear in the magnetic field, it is found that the dynamic coercive field follows a square-root power-law in the slope of the magnetic field, shifted by the depinning field. For a more general domain wall velocity different power-law exponents are found, yet the overall form for the scaling of the area of the hysteresis loop remains a power-law shifted by the depinning field. This shifted power-law could be interpreted to be a crossover between adiabatic and dynamic regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号