首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure, composition, and electrocatalytic properties of the coatings formed on aluminum by ion-beam-assisted deposition of platinum from the plasma of a pulsed arc discharge under conditions where deposited-metal ions are used as deposition-assisting ions are studied. The coating thickness reaches ~30 nm, and the near-surface content of platinum atoms in the coatings is ~2.6 × 1016 cm-2. The electrocatalytic activities of aluminum-based electrodes with the coatings in the reactions of electrochemical oxidation of methanol and ethanol, which form the basis for the principle of operation of low-temperature fuel cells (considered as promising chemical sources of an electric current), are significantly higher than the activity of a platinum electrode.  相似文献   

2.
A new concept of utilization of titanium dioxide matrix in electrocatalysis by admixing it with polyoxometallate modified gold nanoparticles is described here. The approach utilizes Keggin-type phosphododecamolybdate (PMo12O403−) adsorbates capable of modifying, activating and stabilizing Au nanoparticles of the sizes of 30-40 nm. Ultra-thin films of phosphomolybdates on nanostructured gold are characterized by well-defined fast (reversible) multi-electron electrochemical reactions. By dispersing platinum black over the Au-containing TiO2, the electrocatalytic activity of Pt nanoparticles towards oxidation of ethanol has been enhanced. Remarkable increases of electrocatalytic currents measured under voltammetric and chronoamperometric conditions have been observed. The most likely explanation takes into account improvement of overall conductivity (due to the presence of nanostructured gold) at the electrocatalytic interface (including TiO2-support), as well as and possibility of specific Pt-TiO2 or Pt-Au electronic interactions and existence of active hydroxyl groups (on titanium dioxide or polyoxometallate surfaces) in the vicinity of catalytic Pt sites.  相似文献   

3.
A technique for the laser coloration of precious metals is described that is based on the oxidation of a titanium film deposited on the surface of a metal. When laser radiation acts on the film, it is heated and oxidizes. Depending on the radiation parameters, the resulting oxide films have different thicknesses and, due to light interference, they acquire different colors. The visible color of the surface depends on the angle of viewing after imaging. The aim of this work is to identify the color palette of a gold plate’s surface with a thin film of titanium deposited on it. The titanium film is oxidized via fiber laser irradiation with a wavelength of 1.064 μm. Samples of color palettes are examined spectrophotometrically, and the chemical and mechanical stability of the resulting oxide coatings are tested.  相似文献   

4.
Titanium and its alloys are widely used for orthopedic and dental implants because of their superior mechanical properties, low modulus, excellent corrosion resistance and good biocompatibility. However, it takes several months for titanium implants and bone tissue to reach integration. Hence, there is growing interest in shortening the process of osseointegration and thereby reducing surgical restrictions. Various surface modifications have been applied to form a bioactive titanium oxide layer on the metal surface, which is known to accelerate osseointegration.The present work shows that titanium dioxide (TiO2) layers formed on titanium substrates by etching in a solution of sodium hydroxide (NaOH) or hydrogen peroxide/phosphoric acid (H3PO4/H2O2, with a volume ratio of 1:1) are highly suitable pre-treatments for apatite-like coating deposition. Using a two-step procedure (etching in an alkaline or acidic solution followed by soaking in Hanks’ medium), biomimetic calcium phosphate coatings were deposited on porous TiO2 layers. The combined effects of surface topography and chemistry on the formation of the calcium phosphate layer are presented. The topography of the TiO2 layers was characterized using HR-SEM and AFM techniques. The nucleation and growth of calcium phosphate (Ca-P) coatings deposited on TiO2 porous layers from Hanks’ solution was investigated using HR-SEM microscopy. AES, XPS and FTIR surface analytical techniques were used to characterize the titanium dioxide layers before and after deposition of the calcium phosphate coatings, as well as after the process of protein adsorption. To evaluate the potential use of such materials for biomedical applications, the adsorption of serum albumin, the most abundant protein in the blood, was studied on such surfaces.  相似文献   

5.
A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the chitosan films deposited using an aqueous solvent, which were removed when exposed to the ultra-high vacuum environment of XPS.  相似文献   

6.
Catalytic layers are prepared by the vacuum ion-beam-assisted deposition of tin and platinum onto carbon-based AVCarb® Carbon Fiber Paper P50 and Toray Carbon Fiber Paper TGP-H-060 T supports to produce electrocatalysts for direct methanol and ethanol fuel cells with a polymer-membrane electrolyte. The layers are formed in the mode of ion-assisted deposition, wherein ions of the deposited metal are used as ions assisting deposition. Metal deposition is performed from a neutral vapor fraction, while mixing of the deposited layer with the substrate by accelerated ions of the same metal is carried out from the vacuum arc discharge plasma of a pulsed electric arc ion source. The morphology and composition of the layers is studied using scanning electron microscopy, electron probe microanalysis, X-ray fluorescence analysis, and Rutherford backscattering spectrometry. It is demonstrated by means of voltammetric measurements that the resulting electrocatalysts exhibit activity in the oxidation of methanol and ethanol.  相似文献   

7.
We report a simple and effective supercritical fluid route to uniformly load ultrafine metal nanoparticles on the hydrophobic surfaces of graphene sheets. In the presence of supercritical carbon dioxide, PtRu alloy nanoparticles are decorated evenly on functionalized graphene sheets (FGSs) upon the reduction of organic platinum (II) and ruthenium (III) precursors, and its application as an electrocatalyst for methanol oxidation is studied. Transmission electron microscopy observation shows that highly dispersed PtRu metallic nanoparticles with an average size of about 3.11?nm are uniformly and densely distributed on the hydrophobic surface of FGSs. X-ray diffraction patterns demonstrate that the particles had a face-centered cubic crystal structure, and X-ray photoelectron spectroscopy analysis indicates the existence of zero-valence metals. Compared with the widely used Vulcan XC-72 carbon black, the PtRu/FGS composites exhibit superior catalytic activity and stability for methanol oxidation. The huge surface area of graphene and uniform distribution of nanosized metal particles are two critical factors for the significantly enhanced electrocatalytic efficiency. The findings suggest that the supercritical fluid method is highly efficient in preparing graphene-supported metallic catalysts, and FGSs serve as a favorable electrocatalytic carrier for direct methanol fuel cells.  相似文献   

8.
Active layers of electrocatalysts are prepared by the ion-beam assisted deposition (IBAD) of platinum onto carbon-based AVCarb® Carbon Fiber Paper P50 and Toray Carbon Fiber Paper TGP-H-060 T supports and Nafion® N 115 polymer membrane electrolyte in the mode where the deposited metal ions are used as ions assisting the deposition process. Metal deposition and mixing of the deposited layer with the substrate under an accelerating voltage of 10 kV by the same metal ions are carried out from a neutral fraction of metal vapor and the ionized plasma of a pulsed vacuum-arc discharge, respectively. The composition and microstructure of the surface layers obtained are studied by Rutherford backscattering spectrometry (RBS), scanning electron microscopy (SEM), electron-probe microanalysis (EPMA), and X-ray fluorescence (XRF) analysis. The platinum concentration in the layers is (0.5–1.5) × 1016 at/cm2. The prepared electrocatalysts exhibit activity in the process of the electrochemical oxidation of methanol and ethanol, which form the basis for the principle of operation of low temperature fuel cells (direct methanol fuel cells (DMFC) and direct ethanol fuel cells (DEFC)).  相似文献   

9.
The mechanical and corrosion resistance of hydrophilic sphene/titania composite coatings on titanium formed by a hybid technique of microarc oxidation (MAO) and heat-treatment were investigated. The results indicated that the heat-treatment could improve the hardness, elastic modulus, elastic recovery and corrosion resistance of the MAO coatings, and reinforce the interface bonding between MAO coatings and titanium. A cefazolin sodium/chitosan drug film was prepared on the coating surfaces. The drug load procedures such as the addition of chitosan obviously increased the sustained-release ability of drug films. In addition, the increase of cefazolin sodium concentration could increase the accumulative release concentration of cefazolin sodium. The sustaining-release ability of drug films deposited on the MAO and heat-treated MAO coatings is similar. In the interior of drug film, the physical and chemical bonding reactions such as Coulombic interactions, van der Waals force and H-bonding etc. could be produced, through the chemical group interactions such as -OH and -NH2 groups of chitosan with -CO of cefazolin sodium.  相似文献   

10.
The physical-mechanical of properties of biocompatible calcium phosphate coatings deposited onto titanium and silicon substrates from erosion materials, which are generated by irradiating hydroxyapatite (synthetic and natural) targets by means of the high-power pulsed ion beam of a Temp-4 accelerator, are investigated. A calculation technique for predicting the rate and energy efficiency of deposition using pulsed ion beams is proposed. Their characteristics are analyzed as applied to the formation of calcium phosphate coatings.  相似文献   

11.
The color parameters of carbon coatings deposited by magnetron sputtering of a graphite target onto substrates of stainless steel without a sublayer and with a titanium sublayer are calculated. By numerical modeling, the refractive indices and extinction coefficients for the titanium sublayer and carboniferous film as well as the volume content of titanium dioxide in the sublayer are determined. Physico-Technical Institute of the Academy of Sciences of Belarus, 4, Zhodinskaya St., Minsk, 220141, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 3, pp. 374–385, May–June, 1997.  相似文献   

12.
The influence of strong electric fields created by the tip of a scanning tunnel microscope on the growth, modification, and destruction of platinum oxide nanoparticles and their interaction with molecular hydrogen was studied in high-vacuum experiments by the “nanolaboratory” method. The dependences of the rate of platinum oxidation on the voltage applied to the contact, its polarity in particular, were measured and interpreted. The possibility of field-induced reversible changes in the atomic structure of oxide phases was demonstrated. For the first time, applied field polarity dependent autooscillations of chemical reactions accelerated by the field that occurred in the interaction of molecular hydrogen with PtO x were observed. The results obtained, which modeled the influence of the charges of small metal particles on their catalytic activity, introduced a new size parameter into the theory of deposited catalysts. This parameter determined maximum sizes of nanoparticles whose reactivity depended on their charge state.  相似文献   

13.
There is a growing interest in devising wet chemical alternatives for physical deposition methods for applications involving thin films, e.g., catalysis. Deposition of platinum on thin gold films is often a problem leading to incomplete coverage and improper adhesion to solid surfaces. Gold substrates often need pre-activation for achieving complete coverage. We demonstrate here that dendrimers with proper functionalities and size work as well-defined nucleating agents and adhesion promoters. This feature is demonstrated using an amine-terminated dendrimer of generation 4.0. This approach allows one to obtain adherent nanoparticulate films of platinum on gold. Unlike other nucleating agents and adhesion promoting compounds, dendrimers have a well-defined ordered structure in terms of their space filling ability. The stability of the films obtained with adsorbed dendrimers is demonstrated using the electrocatalytic reactions of fuels like methanol. The films formed without dendrimers cannot sustain the electro-oxidation currents due to the instability of the films while the films formed with dendrimers can sustain currents for longer duration and for several cycles. The dendrimer-derived Pt films exhibit higher catalytic activity compared to other methods  相似文献   

14.
《Applied Surface Science》2005,239(3-4):302-310
Titanium carbide/amorphous-carbon (TiC/a-C:H) nanocomposite coatings deposited by pulsed unbalanced reactive magnetron sputtering have been investigated in terms of structure, chemical and phase composition by AFM, TEM, XPS and XRD analyses. Subject to total carbon content, metallic titanium, titanium carbide and amorphous-carbon phases were found in the deposited coatings, which contributed to the observed microstructures and morphologies. The specific resistivity of nanocomposite coatings scales up with increasing amount of matrix-forming carbon. Hardness profiles of the different compositions revealed that nearly stoichiometric TiC films with average crystallite size of 70 nm exhibit the maximum hardness, whereas the lowest friction coefficient (μ<0.1) was found in films rich in amorphous-carbon and containing smaller TiC nanocrystallites (〈d〉 ∼ 10 nm).  相似文献   

15.
Calcium was added into titanium nitride coatings deposited using a hybrid magnetron sputtering-arc evaporation process. The calcium content in the films was adjusted by the variation of the pulsed DC current applied to the Ca sputtering target. X-ray diffraction analyses suggested that the increase of the calcium content induced the partial substitution of titanium atoms by calcium ones in the TiN lattice and a refinement of the grain size. Optical reflectance investigations showed that the absorption band of TiN was shifted towards higher wavelengths and that (Ti,Ca)N coatings may be suitable for decorative applications. Finally, the decrease of the film reflectivity was interpreted as a consequence of a free electron concentration decrease as confirmed from electrical resistivity measurements.  相似文献   

16.
Ti-Cr-N coatings were deposited on a low-carbon steel St3 substrate by overlapping of Ti and Cr plasma flows in residual nitrogen atmosphere using ion bombardment. Auger electron spectroscopy and X-ray diffraction were used to analyze the element and phase composition of the deposited coatings. It was established that, under constant deposition conditions (the arc current, gas pressure, bias voltage), coatings possess the fcc structure of a (Ti,Cr)N solid solution with uniform distribution of elements along the depth. The growth of the substrate bias voltage leads to an increase of titanium concentration in the coating due to changes in the interaction processes (condensation and sputtering) of the deposited materials with the substrate. Corrosion tests of the coatings and steel St3 were performed in acid (1 M H2SO4) and salt (3% NaCl) media. It was found that the corrosion processes progress less intensely in salt solution than in acid medium.  相似文献   

17.
为了增强Ti6Al4V钛合金的耐磨性,采用激光沉积制造方法在其表面上制备了以原位生成的TiC颗粒和直接添加的WC颗粒为增强相的耐磨涂层,观察了各涂层的微观组织,并测量了涂层的显微硬度和涂层在室温大气条件下的摩擦磨损性能。结果表明各涂层和基体呈现冶金结合,原位自生的TiC和部分熔化的WC颗粒均能够均匀弥散分布于基体上,由于增强相颗粒的弥散强化及激光沉积组织的细晶强化作用,基材的硬度和耐磨性均得到了提高。原位自生的TiC涂层比WC涂层硬度梯度分布平缓,但耐磨性稍差。  相似文献   

18.
In this work results of experiments on the in situ production of titanium nitride by the reaction of titania sol–gel with a nitrogenous admixture under laser irradiation are reported. A diode laser beam at different powers and traverse speeds was applied to the mixture placed on EN43 mild steel and 316L stainless steel substrates. Composite coatings of titanium nitride and titanium oxide with a hardness of 17–21 GPa have been achieved by this new method. Surface morphology and microstructure of the deposited coatings and substrate surface layers were examined using optical microscopy, scanning electron microscopy, and field-emission gun scanning electron microscopy. Chemical composition was determined by energy-dispersive X-ray analysis. The phases were identified by X-ray diffraction. Results of microhardness and nanohardness at the top surface were evaluated. PACS 81.15.Fg; 81.20.Fw; 81.05.-t  相似文献   

19.
TiMoN nano-multilayer hard coatings have been deposited using the closed field unbalanced magnetron sputter ion plating (CFUBMSIP) technique. In one set of experiments, standard DC power supplies were used on four magnetrons in the CFUBMSIP system (4DC magnetrons). The second set of experiments was also in the same magnetic field configuration of CFUBMSIP, but three magnetrons were as again powered with standard DC whilst one magnetron with Ti target was supplied by a high power impulse magnetron sputtering (HIPIMS) power generator (3DC + 1HIPIMS magnetrons). Two elemental titanium sputtering targets and two of molybdenum were used to produce the TiMoN nano-multilayer coatings. Analysis of the coatings was carried out to investigate the differences in terms of properties, compositions and microstructures of the coatings deposited by these two sets of experiments. It was found that the coatings deposited by both sets of the experiments exhibited similar properties of high hardness, good adhesion and exceptional wear resistance, with a lower sliding friction than more commonly used hard coatings including TiN, CrN, TiAlN, CrTiAlN etc. Although the initial TiN coating as formed at the coating-substrate interface using the process of 3DC + 1HIPIMS magnetrons appeared to show a less oriented microstructure in comparison with that of the coating produced by the process using 4DC magnetrons, the compositions and cross sectional microstructures of the bulk of the coatings did not show significant differences, as observed by the cross sectional Transmission Electron Microscopy microstructures of these two types of TiMoN coatings.  相似文献   

20.
The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号