首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We investigate, in the setting of UMD Banach spaces E, the continuous dependence on the data A, F, G and ξ of mild solutions of semilinear stochastic evolution equations with multiplicative noise of the form
$ \left\{ {l} {\rm d}X(t) = [AX(t) + F(t, X(t))] \, {\rm d}t + G(t, X(t)) \, {\rm d}W_H(t),\quad t \in [0,T],\\ X(0) = \xi, \right. $ \left\{ \begin{array}{l} {\rm d}X(t) = [AX(t) + F(t, X(t))] \, {\rm d}t + G(t, X(t)) \, {\rm d}W_H(t),\quad t \in [0,T],\\ X(0) = \xi, \end{array} \right.  相似文献   

2.
We consider the effect of perturbations of A on the solution to the following semi-linear parabolic stochastic partial differential equation: $$\left\{\begin{array}{ll}{\rm d}U(t) & = AU(t)\,{\rm d}t + F(t,U(t))\,{\rm d}t + G(t,U(t))\,{\rm d}W_H(t), \quad t > 0;\\U(0)& = x_0. \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad({\rm SDE})\end{array} \right.$$ Here, A is the generator of an analytic C 0-semigroup on a UMD Banach space X, H is a Hilbert space, W H is an H-cylindrical Brownian motion, ${G:[0,T]\times X\rightarrow \mathcal{L}(H, X_{\theta_G}^{A})}$ , and ${F : [0, T]\times X \rightarrow X_{\theta_F}^{A}}$ for some ${\theta_G > -\frac{1}{2}, \theta_F > -\frac{3}{2}+\frac{1}{\tau}}$ , where ${\tau\in [1, 2]}$ denotes the type of the Banach space and ${X_{\theta_F}^{A}}$ denotes the fractional domain space or extrapolation space corresponding to A. We assume F and G to satisfy certain global Lipschitz and linear growth conditions. Let A 0 denote the perturbed operator and U 0 the solution to (SDE) with A substituted by A 0. We provide estimates for ${\|U - U_0\|_{L^p(\Omega;C([0,T];X))}}$ in terms of ${D_{\delta}(A, A_0) := \|R(\lambda : A) - R(\lambda : A_0)\|_{\mathcal{L}(X^{A}_{\delta-1},X)}}$ . Here, ${\delta\in [0, 1]}$ is assumed to satisfy ${0\leq \delta < {\rm min}\{\frac{3}{2} - \frac{1}{\tau} + \theta_F,\, \frac{1}{2} - \frac{1}{p} + \theta_G \}}$ . The work is inspired by the desire to prove convergence of space approximations of (SDE). In this article, we prove convergence rates for the case that A is approximated by its Yosida approximation.  相似文献   

3.
In this paper we deal with local estimates for parabolic problems in ${\mathbb{R}^N}$ with absorbing first order terms, whose model is $$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$ where ${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$ and ${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$ .  相似文献   

4.
We consider the existence of nontrivial solutions of the boundary-value problems for nonlinear fractional differential equations
*20c Da u(t) + l[ f( t,u(t) ) + q(t) ] = 0,    0 < t < 1, u(0) = 0,    u(1) = bu(h), \begin{array}{*{20}{c}} {{{\mathbf{D}}^\alpha }u(t) + {{\lambda }}\left[ {f\left( {t,u(t)} \right) + q(t)} \right] = 0,\quad 0 < t < 1,} \\ {u(0) = 0,\quad u(1) = \beta u(\eta ),} \\ \end{array}  相似文献   

5.
We consider the Cauchy problem for the nonlinear Schrödinger equations $ \begin{array}{l} iu_t + \triangle u \pm |u|^{p-1}u =0, \qquad x \in \mathbb{R}^d, \quad t \in \mathbb{R} \\ u(x,0)= u_0(x), \qquad x \in \mathbb{R}^d \end{array} $ for 1 < p < 1 + 4/d and prove that there is a ${\rho (p ,d) \in (1,2)}We consider the Cauchy problem for the nonlinear Schr?dinger equations
l iut + \triangle u ±|u|p-1u = 0,        x ? \mathbbRd,     t ? \mathbbR u(x,0) = u0(x),        x ? \mathbbRd \begin{array}{l} iu_t + \triangle u \pm |u|^{p-1}u =0, \qquad x \in \mathbb{R}^d, \quad t \in \mathbb{R} \\ u(x,0)= u_0(x), \qquad x \in \mathbb{R}^d \end{array}  相似文献   

6.
In this paper we consider the existence of homoclinic solutions for the following second order non-autonomous Hamiltonian system $${\ddot q}-L(t)q+\nabla W(t,q)=0, \quad\quad\quad\quad\quad\quad\quad (\rm HS)$$ where ${L\in C({\mathbb R},{\mathbb R}^{n^2})}$ is a symmetric and positive definite matrix for all ${t\in {\mathbb R}}$ , W(t, q)?=?a(t)U(q) with ${a\in C({\mathbb R},{\mathbb R}^+)}$ and ${U\in C^1({\mathbb R}^n,{\mathbb R})}$ . The novelty of this paper is that, assuming L is bounded from below in the sense that there is a constant M?>?0 such that (L(t)q, q)?≥ M |q|2 for all ${(t,q)\in {\mathbb R}\times {\mathbb R}^n}$ , we establish one new compact embedding theorem. Subsequently, supposing that U satisfies the global Ambrosetti–Rabinowitz condition, we obtain a new criterion to guarantee that (HS) has one nontrivial homoclinic solution using the Mountain Pass Theorem, moreover, if U is even, then (HS) has infinitely many distinct homoclinic solutions. Recent results from the literature are generalized and significantly improved.  相似文献   

7.
We deal with the following parabolic problem, $$(P)\left\{\begin{array}{lll} u_t - \Delta{u} + |\nabla{u}|^q \quad=\quad \lambda{g}(x)u + f(x, t),\quad u > 0 \; {\rm in} \; \Omega \; \times \; (0, T),\\ \qquad\quad\quad\; u(x, t) \quad=\quad 0 \quad{\rm on}\; {\partial}{\Omega}\; \times ; (0, T),\\ \qquad\quad\quad\; u(x, 0) \quad=\quad u_{0}(x), \quad x \in {\Omega},\end{array}\right.$$ where is a bounded regular domain or ${\Omega = \mathbb{R}^N}$ , ${1 < q \leq 2, \lambda > 0\; {\rm and}\; f \geq 0, u_{0} \geq 0}$ are in a suitable class of functions. We give assumptions on g with respect to q for which for all λ >  0 and all ${f \in L^1(\Omega_T ), f \geq 0}$ , problem (P) has a positive solution. Under some additional conditions on the data, the Cauchy problem and the asymptotic behavior of the solution are also considered.  相似文献   

8.
Let B be the unit ball in ${\mathbb{R}^N}Let B be the unit ball in \mathbbRN{\mathbb{R}^N}, N ≥ 3 and n be the exterior unit normal vector on the boundary. We consider radial solutions to
D2 u = l(1+ sign(p)u)p     in  B,     u = 0,     \frac?u?n = 0     on  ?B\Delta^2 u = \lambda(1+ {\rm sign}(p)u)^{p} \quad {\rm in} \, B, \quad u = 0, \quad \frac{\partial{u}}{\partial{n}} = 0 \quad {\rm on} \, \partial B  相似文献   

9.
In this paper, we consider two new regularity criteria for the 3D Navier–Stokes equations involving partial components of the velocity in multiplier spaces. It is proved that if the horizontal velocity ? = (u 1,u 2,0) satisfies $$\int_{0}^{T} \frac{\|\tilde{u}\|_{\dot{X}_{r}}^{\frac{2}{1-r}}}{1+ln(e + \|u(t,.)\|_{\infty})}{\rm d}t < \infty, \quad r \in[0, 1),$$ or the horizontal gradient field satisfies $$\int_{0}^{T}\frac{\|\nabla_{h}\tilde{u}\|_{\dot{X}_{r}}^{\frac{2}{2-r}}}{1 + ln(e + \|u(t,.)\|_{\infty})}{\rm d}t < \infty, \quad r \in[0, 1],$$ then the local strong solution remains smooth on [0, T].  相似文献   

10.
We consider a singular perturbation problem for a system of nonlinear Schr?dinger equations: $$ \begin{array}{l} -\varepsilon^2\Delta v_1 +V_1(x)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\varepsilon^2\Delta v_2 +V_2(x)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N), \end{array} \quad\quad\quad\quad\quad (*) $$ where N?=?2, 3, ?? 1, ?? 2, ?? > 0 and V 1(x), V 2(x): R N ?? (0, ??) are positive continuous functions. We consider the case where the interaction ?? > 0 is relatively small and we define for ${P\in{\bf R}^N}$ the least energy level m(P) for non-trivial vector solutions of the rescaled ??limit?? problem: $$ \begin{array}{l} -\Delta v_1 +V_1(P)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\Delta v_2 +V_2(P)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N). \end{array} \quad\quad\quad\quad\quad\quad (**) $$ We assume that there exists an open bounded set ${\Lambda\subset{\bf R}^N}$ satisfying $$ {\mathop {\rm inf} _{P\in\Lambda} m(P)} < {\mathop {\rm inf}_{P\in\partial\Lambda} m(P)}. $$ We show that (*) possesses a family of non-trivial vector positive solutions ${\{(v_{1\varepsilon}(x), v_{2\varepsilon} (x))\}_{\varepsilon\in (0,\varepsilon_0]}}$ which concentrates??after extracting a subsequence ?? n ?? 0??to a point ${P_0\in\Lambda}$ with ${m(P_0)={\rm inf}_{P\in\Lambda}m(P)}$ . Moreover (v 1?? (x), v 2?? (x)) converges to a least energy non-trivial vector solution of (**) after a suitable rescaling.  相似文献   

11.
We investigate the asymptotic behaviour as p of sequences of positive weak solutions of the equation $$\left\{\begin{array}{l}-\Delta_p u = \lambda\,u^{p-1}+ u^{q(p)-1}\quad {\rm in}\quad \Omega,\\ u = 0 \quad {\rm on}\quad \partial\Omega,\end{array} \right.$$ where λ > 0 and either 1 < q(p) < p or pq(p), with ${{\lim_{p\to\infty}{q(p)}/{p}=Q\neq1}}$ . Uniform limits are characterized as positive viscosity solutions of the problem $$\left\{\begin{array}{l}\min\left\{|\nabla u (x)| - \max\{\Lambda\,u (x),u ^Q(x)\}, -\Delta_{\infty}u (x)\right\} = 0 \quad {\rm in} \quad \Omega,\\ u = 0\quad {\rm on}\quad \partial\Omega.\end{array}\right.$$ for appropriate values of Λ > 0. Due to the decoupling of the nonlinearity under the limit process, the limit problem exhibits an intermediate behavior between an eigenvalue problem and a problem with a power-like right-hand side. Existence and non-existence results for both the original and the limit problems are obtained.  相似文献   

12.
In this paper, sufficient conditions for the approximate controllability of the following stochastic semilinear abstract functional differential equations with infinite delay are established $$\begin{array}{@{}l@{}}d\bigl[x^{\prime}(t)-g(t,x_{t})\bigr]=\bigl[Ax(t)+f(t,x_{t})+Bu(t)\bigr]dt+G(t,x_{t})dW(t),\\\noalign{\vskip3pt}\quad \mbox{a.e on}\ t\in J:=[0,b],\\\noalign{\vskip3pt}x_{0}=\varphi\in {\mathfrak{B}},\\\noalign{\vskip3pt}x^{\prime}(0)=\psi \in H,\end{array}$$ where the state x(t)∈H,x t belongs to phase space ${\mathfrak{B}}$ and the control u(t)∈L 2 ? (J,U), in which H,U are separable Hilbert spaces and d is the stochastic differentiation. The results are worked out based on the comparison of the associated linear systems. An application to the stochastic nonlinear wave equation with infinite delay is given.  相似文献   

13.
Let H (t, x, p) be a Hamiltonian function that is convex in p. Let the associated Lagrangian satisfy the nonstandard minorization condition where m > 0, ω > 0, and C ≥ 0 are constants. Under some additional conditions, we prove that the associated value function is the unique viscosity solution of S t + H(t, x, ∇S) = 0 in , without any conditions at infinity on the solution. Here ωT < π/2. To the Hamilton–Jacobi equation corresponding to the classical action integrand in mechanics, we adjoin the continuity equation and establish the existence and uniqueness of a viscosity–measure solution (S, ρ) of
This system arises in the WKB method. The measure solution is defined by means of the Filippov flow of ∇S.   相似文献   

14.
We present sharp Hessian estimates of the form D2 Se(t,x) £ g(t)I{D^2 S^\varepsilon(t,x)\leq g(t)I} for the solution of the viscous Hamilton–Jacobi equation
llSet+\frac12|DSe|2+V(x)-eDSe = 0    in  QT=(0,T]× \mathbb Rn,                                  Se(0,x) = S0(x)   in \mathbb Rn.\begin{array}{ll}S^\varepsilon_t+\frac{1}{2}|DS^\varepsilon|^2+V(x)-\varepsilon\Delta S^\varepsilon = 0\quad {\rm in} \, Q_T=(0,T]\times\, {\mathbb {R}^n}, \\ \qquad \qquad \qquad \qquad \quad \, S^\varepsilon(0,x) = S_0(x)\quad{\rm in}\, {\mathbb {R}^n}.\end{array}  相似文献   

15.
We consider the following nonlinear problem in ${\mathbb {R}^N}$ $$- \Delta u +V(|y|)u = u^{p},\quad u > 0 \quad {\rm in}\, \mathbb {R}^N, \quad u \in H^1(\mathbb {R}^N), \quad \quad \quad (0.1)$$ where V(r) is a positive function, ${1< p < {\frac{N+2}{N-2}}}$ . We show that if V(r) has the following expansion: $$V(r) = V_0+\frac a {r^m} +O \left(\frac1{r^{m+\theta}}\right),\quad {\rm as} \, r\to +\infty,$$ where a > 0, m > 1, θ > 0, and V 0 > 0 are some constants, then (0.1) has infinitely many non-radial positive solutions, whose energy can be made arbitrarily large.  相似文献   

16.
In this article, we consider the problem of finding a solution to ill-posed problems for abstract wave equations in a Hilbert space, of the form
when A is a general linear selfadjoint operator. We study issues like existence, uniqueness and continuance dependance of data and stability for this problem. Under precise constraint conditions on T, we make such problems well posed and in effect, generalize known results about these equations.   相似文献   

17.
Let ?? be an open, bounded domain in ${\mathbb{R}^n\;(n \in \mathbb{N})}$ with smooth boundary ???. Let p, q, r, d 1, ?? be positive real numbers and s be a non-negative number which satisfies ${0 < \frac{p-1}{r} < \frac{q}{s+1}}$ . We consider the shadow system of the well-known Gierer?CMeinhardt system: $$ \left \{ \begin{array}{l@{\quad}l} \displaystyle{u_t = d_1\Delta u - u + \frac{u^p}{\xi^q}}, & \quad {\rm in}\;\Omega \times (0,T), \\ \displaystyle{\tau \xi_t = -\xi + \frac{1}{|\Omega|} \int\nolimits_\Omega\frac{u^r}{\xi^s} {\rm d}x}, & \quad {\rm in}\;(0,T), \\ \displaystyle{\frac{\partial u}{\partial \nu} =0}, & \quad {\rm on}\;\partial \Omega \times (0,T), \\ \displaystyle{\xi(0) = \xi_0 >0 , \quad u(\cdot,0) = u_0(\cdot)} \geq 0 & \quad {\rm in}\;\Omega. \end{array} \right. $$ We prove that solutions of this system exist globally in time under some conditions on the coefficients. Our results are based on a priori estimates of the solutions and improve the global existence results of Li and Ni in [4].  相似文献   

18.
Let Ω be an open, bounded domain in \mathbbRn  (n ? \mathbbN){\mathbb{R}^n\;(n \in \mathbb{N})} with smooth boundary ∂Ω. Let p, q, r, d 1, τ be positive real numbers and s be a non-negative number which satisfies 0 < \fracp-1r < \fracqs+1{0 < \frac{p-1}{r} < \frac{q}{s+1}}. We consider the shadow system of the well-known Gierer–Meinhardt system:
$ \left \{ {l@{\quad}l} \displaystyle{u_t = d_1\Delta u - u + \frac{u^p}{\xi^q}}, & \quad {\rm in}\;\Omega \times (0,T), \\ \displaystyle{\tau \xi_t = -\xi + \frac{1}{|\Omega|} \int\nolimits_\Omega\frac{u^r}{\xi^s} {\rm d}x}, & \quad {\rm in}\;(0,T), \\ \displaystyle{\frac{\partial u}{\partial \nu} =0}, & \quad {\rm on}\;\partial \Omega \times (0,T), \\ \displaystyle{\xi(0) = \xi_0 >0 , \quad u(\cdot,0) = u_0(\cdot)} \geq 0 & \quad {\rm in}\;\Omega. \right. $ \left \{ \begin{array}{l@{\quad}l} \displaystyle{u_t = d_1\Delta u - u + \frac{u^p}{\xi^q}}, & \quad {\rm in}\;\Omega \times (0,T), \\ \displaystyle{\tau \xi_t = -\xi + \frac{1}{|\Omega|} \int\nolimits_\Omega\frac{u^r}{\xi^s} {\rm d}x}, & \quad {\rm in}\;(0,T), \\ \displaystyle{\frac{\partial u}{\partial \nu} =0}, & \quad {\rm on}\;\partial \Omega \times (0,T), \\ \displaystyle{\xi(0) = \xi_0 >0 , \quad u(\cdot,0) = u_0(\cdot)} \geq 0 & \quad {\rm in}\;\Omega. \end{array} \right.  相似文献   

19.
A detailed analysis is made of the structure of positive solutions of fourth-order differential equations of the form
under the assumption that α, β are positive constants, p(t), q(t) are positive continuous functions on [a,∞), and p(t) satisfies
Mathematics Subject Classification (2000) 34C10, 34D05  相似文献   

20.
For every positive integer n, consider the linear operator U n on polynomials of degree at most d with integer coefficients defined as follows: if we write ${\frac{h(t)}{(1 - t)^{d + 1}}=\sum_{m \geq 0} g(m) \, t^{m}}For every positive integer n, consider the linear operator U n on polynomials of degree at most d with integer coefficients defined as follows: if we write \frach(t)(1 - t)d + 1=?m 3 0 g(m)  tm{\frac{h(t)}{(1 - t)^{d + 1}}=\sum_{m \geq 0} g(m) \, t^{m}} , for some polynomial g(m) with rational coefficients, then \fracUnh(t)(1- t)d+1 = ?m 3 0g(nm)  tm{\frac{{\rm{U}}_{n}h(t)}{(1- t)^{d+1}} = \sum_{m \geq 0}g(nm) \, t^{m}} . We show that there exists a positive integer n d , depending only on d, such that if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and h(0) = 1, then for nn d , U n h(t) has simple, real, negative roots and positive, strictly log concave and strictly unimodal coefficients. Applications are given to Ehrhart δ-polynomials and unimodular triangulations of dilations of lattice polytopes, as well as Hilbert series of Veronese subrings of Cohen–Macauley graded rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号