首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One-pot synthesis of well dispersed, size-controlled gold nanoparticles with the average size of 10–15 nm and luminescent gold nanoclusters with average size of 1.7–2.0 nm were successfully achieved by thermal decomposition of gold organometallic precursor CH3AuPPh3 in the presence of thiol surfactants in o-xylene. Only difference between the preparations of two types of Au nanoparticles is the amount of thiol surfactant employed. The mechanistic study of formation of gold nanoparticles was carried out by analyzing the samples at different reaction time intervals and revealed that two-staged growth process was involved. The nanoclusters showed strong red emission with the maximum intensity at about 600 nm. The maximum room temperature photoluminescence quantum yield was measured as 1.2%. The catalytic ability of the Au nanoclusters to promote Suzuki–Miyaura coupling involving the C–C bond formation was also investigated.  相似文献   

2.
Two different shell-forming reagents viz. titanium isopropoxide and titanium hydroxyacylate, have been employed to obtain core–shell nanostructures of Ag@TiO2. However, nanocomposites were formed when the shell-forming agent, titanium isopropoxide, was added before breaking the micelles. Titanium hydroxyacylate has been used for the first time as a shell-forming agent which resulted in uniform core–shell structures of Ag@TiO2 with core diameter ranging from 10 to 40 nm and a shell thickness of 10–50 nm. The low rate of hydrolysis of titanium hydroxyacylate than titanium isopropoxide (used in other methods) appears to be responsible for the uniform shell thickness. The presence of capping agent (2-mercaptoethanol) disrupts the formation of a uniform shell structure of Ag@TiO2. HRTEM, IR, and XPS studies of Ag@TiO2 synthesized using capping agent show the formation of Ag2S coated with an amorphous layer of TiO2. A red shift of 25 and 10 nm was observed in the surface plasmon band of silver for Ag@TiO2 core–shell structures (compared with that of silver nanoparticles) synthesized using titanium hydroxyacylate and titanium isopropoxide, respectively. The presence of capping agent (2-mercaptoethanol) masks the surface plasmon peak. Photoluminescence studies show an increase in the emission intensity for the core–shell structures when compared to that of TiO2 nanoparticles.  相似文献   

3.
In the present study, high-yield W18O49@TiO2 core–shell nanoparticles were prepared by modified plasma arc gas condensation without any catalysts or substrates. All the as-prepared samples were characterized by FEG-SEM, XRD, FEG-STEM, and HAADF analytic techniques. The results of the structural analysis show that the as-prepared nanoparticles presenting a core–shell morphology with an average diameter of 43.5 ± 8.0 nm were composed of non-stoichiometric tungsten oxide (W18O49 phase) as the core (20–40 nm) and rutile-phase TiO2 as the shell with non-uniform thickness (10–20 nm). For the optical properties of the as-prepared W18O49@TiO2 core–shell nanoparticles, Raman spectroscopy and photoluminescence (PL) spectra were used. Compared with pure TiO2 and W18O49 nanocrystals, the experimental results reveal that the defects in the lattice between the core and shell layers induced the board and shifted peaks in Raman spectra. Also, W18O49@TiO2 core–shell nanoparticles exhibited green emission at 483 nm wavelength observed in PL spectrum. Thermal gravimetric analyzer (TGA) results indicate that the TiO2 shell served a stable layer and prevented further oxidation from the atmosphere of the W18O49 core, thereby improving the thermal stability of W18O49 nanoparticles.  相似文献   

4.
Obtaining small (<50 nm), monodispersed, well-separated, single iron oxide core–silica (SiO2) shell nanoparticles for biomedical applications is still a challenge. Preferably, they are synthesised by inverse microemulsion method. However, substantial amount of aggregated and multicore core–shell nanoparticles is the undesired outcome of the method. In this study, we report on the production of less than 50 nm overall size, monodispersed, free of necking, single core iron oxide–SiO2 shell nanoparticles with tuneable shell thickness by a carefully optimized inverse microemulsion method. The high degree of control over the process is achieved by understanding the mechanism of core–shell nanoparticles formation. By varying the reaction time and precursor concentration, the thickness of silica layer on the core nanoparticles can be finely adjusted from 5 to 13 nm. Residual reactions during the workup were inhibited by a combination of pH control with shock freezing and ultracentrifuging. These high-quality tuneable core–shell nanocomposite particles exhibit superparamagnetic character and sufficiently high magnetization with great potential for biomedical applications (e.g. MRI, cell separation and magnetically driven drug delivery systems) either as-prepared or by additional surface modification for improved biocompatibility.  相似文献   

5.
A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe3O4) coated with fluorescent silica (SiO2) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe3O4, the formation of SiO2 coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core–shell structure. The magnetic core of the core–shell nanoparticles is 60 ± 10 nm in diameter. The thickness of the fluorescent SiO2 shell is estimated at 15 ± 5 nm. In addition, the fluorescent signal of the SiO2 shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength (λem) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe3O4@SiO2 NPs) were studied. The hysteresis loop of the core–shell NPs measured at room temperature shows that the saturation magnetization (M s) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H c) and remanent magnetization (M r) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core–shell particles have the superparamagnetic properties. The measured blocking temperature (T B) of the TRITC-dextran loaded Fe3O4@SiO2 NPs is about 122.5 K. It is expected that the multifunctional core–shell nanoparticles can be used in bio-imaging.  相似文献   

6.
The preparation and application of rod-shaped core–shell structured Fe3O4–Au nanoparticles for immunomagnetic separation and sensing were described for the first time with this study. To synthesize magnetic gold nanorod particles, the seed-mediated synthetic method was carried out and the resulting nanoparticles were characterized with transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV–Vis), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). Magnetic properties of the nanoparticles were also examined. Characterization of the magnetic gold nanorod particles has proven that the resulting nanoparticles were composed of Fe3O4 core and the gold shell. The rod-shaped gold-coated iron nanoparticles have an average diameter of 16 ± 2 nm and an average length of about 50 ± 5 nm (corresponding aspect ratio of 3). The saturation magnetization value for the magnetic gold nanorod particles was found to be 37 emu/g at 300 K. Rapid and room temperature reaction synthesis of magnetic gold nanorod particles and subsequent surface modification with E. coli antibodies provide immunomagnetic separation and SERS application. The analytical performance of the SERS-based homogenous sandwich immunoassay system with respect to linear range, detection limit, and response time is also presented.  相似文献   

7.
Organic–inorganic composite microspheres with PS as a core and CeO2 as a shell were synthesized by in situ chemical precipitation method. The size of PS core was 117, 163, 206, and 241 nm, respectively, and the shell thickness was about 10 nm. The CeO2 shell was composed of a large number of nanoparticles, of which the size was 4–6 nm. Atomic force microscopy was employed to probe the mechanical properties of core–shell structured ceria-coated polystyrene (PS/CeO2) composite microspheres. On the basis of Hertz’s theory of contact mechanics, compressive moduli were measured by the analysis of force–displacement curves captured on the microsphere samples. For a fixed CeO2 shell thickness, the Young’s modulus of composite microspheres increased with an increase of PS core size. The calculated Young’s moduli (E) values of composites for 136, 185, 242, and 261 nm in diameter were 5.78 ± 0.9, 7.23 ± 1.3, 11.46 ± 1.7, and 14.54 ± 1.4 GPa, respectively. The results revealed the effect of the CeO2 shell on the elastic deformation of the PS core. This approach will provide fundamental insights into the actual role of organic/inorganic core/shell composite abrasives in chemical mechanical polishing.  相似文献   

8.
The AucoreAgshell (Au@Ag) nanoparticles in size of 30 nm were prepared using 10 nm gold nanoparticles as seeds at 90°C, and were purified by high-speed centrifugation to remove the excess trisodium citrate to obtain Au@Ag nanoprobe. In the medium of pH 4.0 acetate buffer solution—7.2 μmol/L H2O2–67 μmol/L Fe(II), Au@Ag nanoparticles exhibited a resonance scattering (RS) peak at 538 nm. Upon addition of Catalase (Ct), the system produced hydroxyl radical that oxidized the Au@Ag nanoprobe to form the AuAg nanoparticles with partly bare nanogold. Those AuAg nanoparticles aggregated to large nanoclusters that led to the RS peak wavelength red-shift and its RS peak intensity enhanced. The catalase activity (C) is linear to the enhanced RS intensity (ΔI) in the range of 6 to 2,800 U/L, with regression equation of ΔI = 0.168 C-0.2, the correlation coefficient of 0.9952, and detection limit of 2.8 U/L. This method was applied to the detection of serum samples, and the results were agreement with that of the spectrophotometry. A new catalytic mechanism of catalase was proposed with oxywater principle that was agreement with the results of resonance scattering spectroscopy, absorption spectrophotometry, transmission electron microscopy and laser scattering.  相似文献   

9.
Core–shell nanoparticles coated with carbon have been synthesized in a single chamber using a continuous and entirely low-pressure plasma-based process. Nanoparticles are formed in an argon plasma using iron pentacarbonyl Fe(CO)5 as a precursor. These particles are trapped in a pure argon plasma by shutting off the precursor and then coated with carbon by passing acetylene along with argon as the main background gas. Characterization of the particles was carried out using TEM for morphology, XPS for elemental composition and PPMS for magnetic properties. Iron nanoparticles obtained were a mixture of FeO and Fe3O4. TEM analysis shows an average size of 7–14 nm for uncoated particles and 15–24 nm for coated particles. The effect of the carbon coating on magnetic properties of the nanoparticles is studied in detail.  相似文献   

10.
11.
Transmission electron microscopy (TEM) and electron diffraction (ED) are used to investigate the nanostructures of two ensembles of Co:CoO core–shell particles. TEM images show that particles of size about 12 nm are almost fully oxidized, while particles with size about 18 nm have a core–shell structure where a Co core is surrounded by a shell of CoO. ED simulation confirms that the larger particles have an fcc-structured Co core and a rock-salt CoO shell structure, while the smaller particles mostly have the rock-salt CoO structure. The core–shell structure is responsible for the unusual magnetic properties of the Co:CoO nanoclusters, especially the occurrence of inverted hysteresis loops (proteresis), but previous research has been indirect, largely based on magnetic measurements and on a cross-comparison with granular materials. Our measurements show that the structures have ferromagnetic fcc Co cores of varying sizes down to 1 nm which are surrounded by antiferromagnetic rock-salt CoO shells. The core radii obtained from the TEM pictures are used to estimate the exchange interactions responsible for proteresis and to pinpoint the core-size window in which proteresis occurs.  相似文献   

12.
CuAg core–shell nanoparticles are synthesized by ultra-high vacuum thermal evaporation. We show on this system how the Energy-Filtered Transmission Electron Microscopy (EFTEM) technique allows one to improve the characterization by precisely pointing out the formation of core–shell arrangements in bimetallic nanoparticle assemblies. A criterion to measure the shell thickness from EFTEM images on unique core–shell nanoparticles is defined, that can be used for core–shell nanoparticles of any sizes, with shell thicknesses over 1 nm. It is based on the intensity variation along a line drawn across a core–shell nanoparticle on a EFTEM image. This criterion has been validated by a close comparison of the shell thickness measurements performed in this work and the ones obtained by acoustic micro-Raman spectroscopy. Using this criterion, we report a strong correlation between the size of the Cu cores and the formation of the core–shell arrangements in the nanoparticle assembly studied in this work. The influence of the Cu core shape is also evidenced. The characterisation of such systems using High Resolution TEM (HRTEM) is also discussed.  相似文献   

13.
Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles (~70–80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles (~6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by ~31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.  相似文献   

14.
A continuous aerosol process has been studied for producing nanoparticles of oxides that were decorated with smaller metallic nanoparticles and are free of organic stabilizers. To produce the oxide carrier nanoparticles, an aerosol of 3–6 μm oxide particles was ablated using a pulsed excimer laser. The resulting oxide nanoparticle aerosol was then mixed with 1.5–2.0 μm metallic particles and this mixed aerosol was exposed to the laser for a second time. The metallic micron-sized particles were ablated during this second exposure, and the resulting nanoparticles deposited on the surface of the oxide nanoparticles producing an aerosol of 10–60 nm oxide nanoparticles that were decorated with smaller 1–5 nm metallic nanoparticles. The metal and oxide nanoparticle sizes were varied by changing the laser fluence and gas type in the aerosol. The flexibility of this approach was demonstrated by producing metal-decorated oxide nanoparticles using two oxides, SiO2 and TiO2, and two metals, Au and Ag.  相似文献   

15.
Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6–12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50–60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50–60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the outer annulus along with the CH4 in the inverse diffusion flame configuration. When particles were synthesized in the presence of the TTIP additive, larger monodispersed individual particles (50–90 nm) were synthesized as observed by TEM. In this article, we show that iron oxide nanoparticles of varied morphology, composition, and size can be synthesized and controlled by varying flame configuration, flame temperature, and additive loading.  相似文献   

16.
Core–shell nanostructures have been synthesized by plasma deposition in radio-frequency plasma reactor. Silica and KCl nanoparticles were encapsulated by deposition of isopropanol-based films of amorphous hydrogenated carbon. Through control of the deposition time, under constant deposition rate of 1 nm/min, particles are encapsulated in a layer of plasma polymer with thickness between 15 and 100 nm. Films are robust, chemically inert, thermally stable up to 250°C. The permeability of the shells is determined by depositing films of various thickness onto KCl nanoparticles and monitoring the dissolution of the core in aqueous solution. The dissolution profile is characterized by an initial rapid release, followed by a slow release that lasts up to 30 days for the thickest films. The profile is analyzed by Fickian diffusion through a spherical matrix. We find that this model captures very accurately the entire release profile except for the first 12 hours during which, the dissolution rate is higher than that predicted by the model. The overall diffusion coefficient for the dissolution of KCl is 3 × 10−21 m2/s.  相似文献   

17.
Spatial inhomogeneities of the indium distribution in In x Ga1–x N epitaxial layers grown on sapphire substrate with a GaN buffer layer were investigated using photoluminescence (PL) in addition to confocal scanning Raman spectroscopy (RS) and PL. Broad emission bands from In-enriched InGaN nanoclusters (700–900 nm) and from the volume outside the clusters (about 460 nm) were observed in PL spectra of an epitaxial InGaN layer with an average In content of 25.7%. It was established that larger micro-PL intensities corresponded to energetically shallower clusters. The observed broadly asymmetric A1(LO) RS band of InGaN confirmed that the In concentration in the layer was highly variable. Modeling the LO phonon band by two Lorentzian curves gave an average In concentration of 21% in the volume outside the clusters and 37% in the nanoclusters, which was considerably higher than the average concentration in the layer and agreed well with their PL band positions.  相似文献   

18.
The optical and magneto-optical properties of hybrid Co–SiOx systems are studied as a function of Co concentration. The structures were prepared by alternate depositions of SiOx thin films and layers of 10-nm-diameter Co nanoparticles produced by an Ion Cluster Source. Both optical and magneto-optical constants of the system gradually increase with the amount of Co, though maintaining low optical absorption values in the visible range. The experimental results are well reproduced assuming that the nanoparticles have a cobalt core (7–8 nm in diameter) surrounded by a cobalt oxide shell (1–2 nm thick). The magneto-optical activity versus optical absorption figure of merit of this system is compared with other magneto-optical dielectric systems.  相似文献   

19.
The evidence of the change of the complex refractive index function E(m) of carbon and iron nanoparticles as a function of their size was found from two-color time-resolved laser-induced incandescence (TiRe-LII) measurements. Growing carbon particles were observed from acetylene pyrolysis behind a shock wave and iron particles were synthesized by pulse Kr–F excimer laser photo-dissociation of Fe(CO)5. The magnitudes of refractive index function were found through the fitting of two independently measured values of particle heat up temperature, determined by two-color pyrometry and from the known energy of the laser pulse and the E(m) variation. Small carbon particles of about 1–14 nm in diameter had a low value of E(m)∼0.05–0.07, which tends to increase up to a value of 0.2–0.25 during particle growth up to 20 nm. Similar behavior for iron particles resulted in E(m) rise from ∼0.1 for particles 1–3 nm in diameter up to ∼0.2 for particles >12 nm in diameter.  相似文献   

20.
Silver and gold are the two most popular metals used for many nanoparticle applications, such as surface enhanced Raman scattering or surface enhanced fluorescence, in which the local field enhancement associated with the excitation of the localized surface-plasmon–polariton resonance (SPR) is exploited. Therefore, tunability of the SPR over a wide energy range is required. For this purpose we have investigated core–shell nanoparticles composed of gold and silver with different shell thicknesses as well as the impact of alloying on these nanoparticles due to a tempering process. The nanoparticles were prepared by subsequent deposition of Au and Ag atoms or vice versa on quartz substrates followed by diffusion and nucleation. Their linear extinction spectra were measured as a function of shell thickness and annealing temperature. It turned out that different gold shell thicknesses on silver cores allow a tuning of the SPR position from 2.79 to 2.05 eV, but interestingly without a significant change on the extinction amplitude. Heating of core–shell nanoparticles up to only 540 K leads to the formation of alloy nanoparticles, accompanied by a back shift of the SPR to 2.60 eV. Calculations performed in quasi-static approximation describe the experimental results quite well and prove the structural assignments of the samples. In additional experiments, we applied the well-established persistent spectral hole burning technique to the alloy nanoparticles in order to determine the ultrafast dephasing time T 2. We obtained a dephasing time of T 2=(8.1±1.6) fs, in good agreement with the dephasing time of T 2,∞=8.9 fs, which is already included in the dielectric function of the bulk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号