首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 62 毫秒
1.
减摇水舱用于减小船体的横摇运动。由于水舱内部结构复杂,导致流体晃荡呈非线性。为了降低预测水舱特性和减摇效果的难度,采用计算流体力学VOF模型来分析水舱中流体的晃荡,在时域内,运用数值方法完成船体非线性横摇运动的实时仿真,其中耦合了水舱中流体和船体的运动。船体随机横摇时,进行水舱流体流量和力矩的功率谱分析,得到减摇频率范围及减摇前后的效果。结果表明,在其减摇频率范围内,减摇水舱具有良好的减摇能力,验证了此方法的可行性。  相似文献   

2.
考虑甲板上浪引起的横倾力矩、非线性阻尼和非线性恢复力矩,建立了规则横浪中船舶横摇运动方程;基于伯努利方程,推导了船舶甲板上浪水质量的计算公式.以66.01米长的拖网渔船为例,计算了不同波浪扰动力矩作用下的横摇响应,并构造了响应的分岔图和庞加莱截面.结果表明:甲板上浪后船舶横摇运动包括混沌运动和周期二、周期三、周期四等多周期运动;随着波浪扰动力矩幅值的增大,横摇响应发生从周期运动到混沌运动或从混沌运动到周期运动的阵发性分岔、正向及反向倍周期分岔.  相似文献   

3.
张银龙  沈庆  陈徐均 《应用力学学报》2005,22(2):247-252,i009
波浪和内部滑动车辆共同作用,使滚装船的横摇加剧。这是许多滚装船发生倾覆的重要原因之一。本文对由滚装船和滑动车辆组成的浮基多体系统中,取滚装船的横摇角和车辆在甲板上的横向位移为此系统的两个自由度。考虑非线性恢复力矩和非线性阻尼力矩的影响,运用浮基多体系统动力学方法,建立了系统的动力学方程。以某型海峡滚装渡轮为例,对在若干车辆同步滑动和波浪共同作用下的滚装船非线性横摇响应和车辆位移响应进行了数值计算,并与线性响应进行了比较,得出了考虑非线性时横摇角显著偏大的结论。  相似文献   

4.
Under pitch excitation,the sloshing of liquid in circular cylindrical tank includes planar motion,rotary motion and rotary motion inside planar motion.The boundaries between stable motion and unstable motion depend on the radius of the tank,the liquid height,the gravitational intension,the surface tensor and the sloshing damping.In this article,the differential equations of nonlinear sloshing are built first. And by variational principle,the Lagrange function of liquid pressure is constructed in volume intergration form.Then the velocity potential function is expanded in series by wave height function at the free surface.The nonlinear equations with kinematics and dynamics free surface boundary conditions through variation are derived.At last,these equations are solved by multiple-scales method.The influence of Bond number on the global stable response of nonlinear liquid sloshing in circular cylinder tank is analyzed in detail.The result indicates that variation of amplitude frequency response characteristics of the system with Bond,jump,lag and other nonlinear phenomena of liquid sloshing are investigated.  相似文献   

5.
In the presented paper, a problem of non-holonomic constrained mechanical systems is treated. New methods in non-holonomic mechanics are applied to a problem of a general coupled rolling motion. Two goals are stressed.The first of them lies in the solution of an originally formulated problem of rolling motion of two rigid cylindrical bodies in the homogeneous gravitational field leading typically to non-linear equations of motion. A solid cylinder can roll inside a ring under the static frictional force assuring rolling without slipping, the ring rolls again without slipping along a generally shaped terrain formed by hills and valleys. “Surprising behaviour” of the mechanical system which permits interesting applications is studied and discussed.The second purpose of the paper is to show that the geometrical theory of non-holonomic constrained systems on fibered manifolds proposed and developed in the last decade by Krupková and others is an effective tool for solving non-holonomic mechanical problems. A comparison of this method to alternative methods is given and the benefits of coordinate-free formulation are mentioned.In this paper, the geometrical theory is applied to the abovementioned mechanical problem. Both types of equations of motion resulting from the theory—deformed equations with the so-called Chetaev-type constraint forces containing Lagrange multipliers, and reduced equations free from multipliers—are found and discussed. Numerical solutions for two particular cases of the motion of the cylindrical system along a cylindrical surface are presented.  相似文献   

6.
Summary The problem of the generation of waves due to small rolling oscillations of a thin vertical plate partially immersed in uniform finite-depth water is investigated here by utilizing two mathematical methods assuming the linearised theory of water waves. In the first method, the use of eigenfunction expansion of the velocity potentials on the two sides of the plate produces the amplitude of wave motion at infinity in terms of an integral involving the unknown horizontal velocity across the gap, and also in terms of another integral involving the unknown difference of the potential across the plate. These unknown functions satisfy two integral equations. Any one of these, when solved numerically, can be used to compute the amplitude of the wave motion set up at either infinity on the two sides of the plate for various values of the wave number.In the second method, the problem is formulated in terms of a hypersingular integral equation involving the difference of the potential function across the plate. The hypersingular integral equation is solved numerically, and its numerical solution is used to compute the wave amplitude at infinity. The two methods produce almost the same numerical results. The results are illustrated graphically, and a comparison is made with the deep-water result. It is observed that the deep-water result effectively holds good if the plate is partially immersed to the order of one-tenth of the bottom depth.This work was initiated when the first Author was visiting Mathematics Department, Indian Institute of Science, Bangalore. It was partially supported by DST, and by CSIR. The authors take this opportunity to thank the Managing Editor for his suggestions to improve the paper in the present form.  相似文献   

7.
The multidimensional modal theory proposed by Faltinsen,et al.(2000) is applied to solve liquid nonlinear free sloshing in right circular cylindrical tank for the first time. After selecting the leading modes and fixing the order of magnitudes baaed on the Narimanov-Moiseev third order asymptotic hypothesis,the general infinite dimensional modal system is reduced to a five dimensional asymptotic modal system (the system of second order nonlinear ordinary differential equations coupling the generalized time dependent coordinates of free surface wave elevation).The numerical integrations of this modal system discover most important nonlinear phenomena,which agree well with both pervious analytic theories and experimental observations. The results indicate that the multidimensional modal method is a very good tool for solving liquid nonlinear sloshing dynamics and will be developed to investigate more complex sloshing problem in our following work.  相似文献   

8.
Common effect of wave and slip of internal vehicles will make rolling of the roll-on ship serious. This is one of the important reasons for overturn of ro-ro ships. The multibody system with a floating base is composed of ro-ro ship and slipping vehicles. Takes the rolling angle of the ship and the transverse displacements of the slipping vehicles on desk as freedoms. Making use of the analysis of apparent gravitation and apparent buoyancy, the wave rolling moment is derived. By means of dynamic method of multibody system, dynamic equations of the system are established. Taking a certain channel ferry as an example, a set of numerical calculation have been carried out for rolling response of the multibody system with a floating base of a ro-ro ship and displacements response of the slipping vehicles under common effect of free slipping vehicles and wave, and a conclusion has been drawn that the motion of the numerous free slipping heavy loads will trend to be synchronous under restraining of the side-wall bulkhead with time because of repeated collision.  相似文献   

9.
矩形贮箱内液体非线性晃动动力学建模与分析   总被引:11,自引:2,他引:11  
陈科  李俊峰  王天舒 《力学学报》2005,37(3):339-345
基于理想流体的假设,根据H-O原理建立了充液贮箱刚体平动与液体非线 性晃动的耦合动力学方程,通过引入改进的势函数描述刚体和液体之间的动边界. 利用伽辽 金方法对动力学方程进行了离散. 针对液体非线性晃动情况,与ALE有限元方法、边界元方 法的结果进行了比较,验证了方法的可行性. 对刚体平动和液体非线性晃动耦合的情 况,数值模拟了多种外力激励下系统的响应. 利用等效力学模型解释了耦合系统固有频率升 高的现象.  相似文献   

10.
An enhanced mechanical model for simulating ship body oscillations and both the induced fluxural and twisting vibrations of the hull in the case of longitudinal seas is presented. The onset of parametric rolling, which may result from nonlinearly coupled heave-pitch-roll motions, and the effects of bending and torsional elasticity of the hull are considered in detail. It is shown that in the above sea conditions the flexural and/or twisting vibrations are likely to occur under a mechanism similar to that of parametric rolling.  相似文献   

11.
In this contribution, a numerical framework for the efficient thermo-mechanical analysis of fully 3D tire structures (axisymmetric geometry) in steady state motion is presented. The modular simulation approach consists of a sequentially coupled mechanical and thermal simulation module. In the mechanical module, the Arbitrary Lagrangian Eulerian (ALE) framework is used together with a 3D finite element model of the tire structure to represent its temperature-dependent viscoelastic behavior at steady state rolling and finite deformations. Physically computed heat source terms (energy dissipation from the material and friction in the tire–road contact zone) are used as input quantities for the thermal module. In the thermal module, a representative cross-sectional part of the tire is employed to evaluate the temperature evolution due to internal and external heat sources in a transient thermal simulation. Special emphasis is given to an adequate material test program to identify the model parameters. The parameter identification is discussed in detail. Numerical results for three different types of special performance tires at free rolling conditions are compared to experimental measurements from the test rig, focusing especially on rolling resistance and surface temperature distribution.  相似文献   

12.
采用欧拉-欧拉多相流模型,辅以RNG k-ε湍流模型对一简化的推流式曝气池进行了数值模拟,控制方程采用有限体积法离散,并采用PISO(Pressure-Implicit with Splitting of Operators)算法求解.通过模拟得到了不同曝气速度下曝气池特征断面的气相体积分数、气液两相速度的分布规律以及...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号