首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
R(f)-PEG (fluoroalkyl double-ended poly(ethylene glycol)) hydrogel is potentially useful as a drug delivery depot due to its advanced properties of sol-gel two-phase coexistence and low surface erosion. In this study, (1)H molecular diffusion nuclear magnetic resonance (NMR) and (19)F spin diffusion NMR were used to probe the drug loading and diffusion properties of the R(f)-PEG hydrogel for small anticancer drugs, 5-fluorouracil (FU) and its hydrophobic analog, 1,3-dimethyl-5-fluorouracil (DMFU). It was found that FU has a larger apparent diffusion coefficient than that of DMFU, and the diffusion of the latter was more hindered. The result of (19)F spin diffusion NMR for the corresponding freeze-dried samples indicates that a larger portion of DMFU resided in the R(f) core/IPDU intermediate-layer region (where IPDU refers to isophorone diurethane, as a linker to interconnect the R(f) group and the PEG chain) than that of FU while the opposite is true in the PEG-water phase. To understand the experimental data, a diffusion model was proposed to include: (1) hindered diffusion of the drug molecules in the R(f) core/IPDU-intermediate-layer region; (2) relatively free diffusion of the drug molecules in the PEG-water phase (or region); and (3) diffusive exchange of the probe molecules between the above two regions. This study also shows that molecular diffusion NMR combined with spin diffusion NMR is useful in studying the drug loading and diffusion properties in hydrogels for the purpose of drug delivery applications.  相似文献   

2.
Hydrogel formed by fluoroalkyl double-ended polyethylene glycol (Rf-PEG) micelles was studied to assess its properties to encapsulate a hydrophobic electron spin labeled drug, Chlorambucil–Tempol adduct (CT), and to control and sustain the drug release. The drug loaded hydrogel samples were characterized with variable-temperature dependent EPR experiment, and EPR theoretical lineshape analysis. It was found that CT molecules reside in the hydrophobic Rf-cores/IPDU shells of the Rf-PEG micelles and the maximum molecular-level loading capacity was estimated to be 18.8 mg per gram of the Rf-PEG. It has been known that Rf-PEG hydrogel with certain molecular masses for the fluoroalkyl group and the PEG chain shows properties of sol/gel phase coexistence and surface erosion, which represent the favorable condition for a pharmaceutical depot to control the kinetics of drug release. To evaluate the Rf-PEG’s biocompatibility and kinetics of the drug release, a cell proliferation assay was carried out on human oropharyngeal carcinoma (KB) cells. The results show that Rf-PEG is biocompatible and able to release CT to the cell media with a constant equilibrium concentration independent of the amount of CT loaded hydrogel.  相似文献   

3.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

4.
Star-shaped block copolymers consisting of non-toxic poly(ethylene glycol) and biodegradable polycaprolactone ((PEG5K-PCL)4) were synthesized by ring-opening polymerization of the ε-caprolactone monomer with hydroxyl-terminated 4-armed PEG as initiator. These biodegradable, amphiphilic star block copolymers showed micellization and sol-gel transition behaviors in aqueous solution with varying concentration and temperature. In the dilute aqueous solutions of star block copolymers, micellization behavior occurred over specific concentration. The 1,6-diphenyl-1,3,5-hexatriene (DPH) solubilization method was used to determine the critical micellization concentration (CMC) of star block copolymers. The obtained micelle size increased with increasing hydrophobic PCL block length. In high-concentration solutions, the star block copolymers showed temperature-sensitive sol-gel transition behavior. The morphology of the micelle and gel was investigated by atomic force microscopy (AFM). As a result, the micelles showed a core-corona spherical structure at concentration near CMC, while the gel showed a mountain-chain-like morphology picture. It was proposed that with increasing the micelle concentration the worm-like micelle clusters formed firstly and the gel was constructed by the packing of micelle clusters.  相似文献   

5.
pH敏感型mPEG-Hz-PLA聚合物纳米载药胶束的制备   总被引:1,自引:0,他引:1  
以合成的含有腙键的聚乙二醇大分子(mPEG-Hz-OH)为引发剂,以丙交酯为单体引发开环聚合反应,并通过调整投料比,制备出3种不同分子量的含腙键的生物可降解嵌段聚合物(mPEG-Hz-PLA).将腙键引入到聚合物的骨架中,以此构建聚合物胶束并作为pH敏感型纳米药物载体.制备的pH敏感型胶束的CMC值等于或低于5.46×10-4 mg/m L,DLS和TEM显示粒径均小于100 nm,且粒径分布均匀.非pH敏感型胶束在不同pH下的粒径变化不明显,而pH敏感型胶束在酸性环境下(pH=4.0和pH=5.0)胶束粒径出现了明显变化.以阿霉素为模型药物制备了pH敏感型载药胶束,其粒径比空白胶束大(100~200 nm),且粒径分布均匀.药物释放实验表明pH敏感型载药胶束随着释放介质pH降低累积释药量增高.MTT实验表明空白胶束对HeLa细胞和RAW264.7细胞几乎没有抑制作用,而载阿霉素的胶束对2种细胞的抑制作用都随着剂量的增大和时间的延长而增强.  相似文献   

6.
The amphiphilic copolymer of poly(methoxy-polyethyleneglycol polycaprolactone) (MePEG-PCL) was synthesized. Micelles loading hydroxycamptothecin (HCPT) as a model drug were prepared by solid-dispersion and dialysis–hydration method. The MePEG-PCL micelles were further characterized in terms of critical association concentrations (CAC), PEG surface density, fixed aqueous layer thickness, in vitro drug release and in vivo pharmacokinetics and biodistribution. The results showed that longer polycaprolactone (PCL) chain length would lead to the reduction of CAC value, stabilized HCPT, increasing drug-loading coefficient, sparser PEG surface density and slower drug release patterns. On the other hand, longer PEG chain length would give rise to less negative zeta potential and larger fixed aqueous layer thickness, as well as sparser PEG surface density and quicker drug release. MePEG-PCL micelles with PEG molecular weight of 2,000, 5,000, 10,000 could extend the AUC of HCPT in blood compartment by 9.13, 13.82, 21.25 times and increase the AUC of 125I-HCPT in the tumor of S180 mice by 7.94, 11.32, 26.08-fold, respectively. It was suggested that the PEG and PCL chain length may play a very important role in the micelles in vitro properties and in vivo behavior.This revised version was published online in January 2005 with corrections to the authors. Two authors - Yan Zhang and Shoukuan Fu - have been added.  相似文献   

7.
The main objective of this study was to evaluate the ability of folic acid-functionalized diblock copolymer micelles to improve the delivery and uptake of two poorly water-soluble anti-tumor drugs, tamoxifen and paclitaxel, to cancer cells through folate receptor targeting. The diblock copolymer used in this study comprised a hydrophilic poly[2-(methacryloyloxy)ethyl phosphorylcholine] (MPC) block, carrying at the chain end the folate targeting moiety, and a pH-sensitive hydrophobic poly[2-(diisopropylamino)ethyl methacrylate] (DPA) block (FA-MPC-DPA). The drug-loading capacities of tamoxifen- and paclitaxel-loaded micelles were determined by high performance liquid chromatography and the micelle dimensions were determined by dynamic light scattering and transmission electron microscopy. Cell viability studies were carried out on human chronic myelogenous leukaemia (K-562) and colon carcinoma cell lines (Caco-2) in order to demonstrate that drug-loaded FA-MPC-DPA micelles exhibited higher cytotoxicities toward cancer cells than unfunctionalized MPC-DPA micelles. Uptake studies confirmed that folate-conjugated micelles led to increased drug uptake within cancer cells, demonstrating the expected selectivity toward these tumor cells.  相似文献   

8.
Interactions between the anticancer drug quercetin and biodegradable polyesters within micelles were investigated by DSC, WAXD, and UV analyses. For micelles based on poly(ethylene glycol) methyl ether-block-poly(epsilon-caprolactone) (MPEG-PCL), DSC analysis indicated that the interactions were between the hydrophobic core and the drug within the micelle. For micelles based on poly(ethylene glycol) methyl ether-block-poly(L-lactide) (MPEG-PLLA), the interactions were between the hydrophobic core and the drug and between hydrophilic segments and the drug. WAXD results indicated that no crystalline phase of the drug was found in either of the micelle types. Based on the DSC and WAXD results, two probable micelle structures were proposed. The UV spectra revealed the presence of hydrogen bonding as the main interaction between the drug and the polyesters. In vitro studies demonstrated that quercetin release from micelles was sustained and was affected by the polymer-drug interaction.  相似文献   

9.
Bioabsorbable hydrogels are useful in a variety of medical applications. Water soluble macromers composed of polyethylene glycol (PEG)-oligo(d,l-lactide) ABA block copolymers end-capped with acrylate groups can be photopolymerized on tissue to provide hydrogels. The synthesis, characterization and photopolymerization of these monomers using either ultra-violet or visible light have been reported previously. The size and number of micelles in solution are elements in the optimization of both the extent and rate of polymerization. In the present study, gel modulus and end group analysis methods were used to characterize the degree of conversion of gel formed from macromers having various oligo(d,l-lactide) (A) block lengths. The formation of micelles was studied using dye solubilization and surface tension measurements. The kinetics of gelation of these macromers showed correlation of polymerization rate with the length of the hydrophobic A block length. The increase in hydrophobic components may cause an increase in the micelle number concentration per unit volume, which is known to directly affect the rate of emulsion polymerization. The hydrophobic segment length is therefore a useful tool for controlling the gel formation on tissue.  相似文献   

10.
Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)-b-poly(epsilon-caprolactone) (PEG(5000)-b-PCL(x)) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy poly(ethylene glycol) (PEG-DSPE), possess small size and high thermodynamic stability, raising their potential as long circulating carriers in the context of delivery of antineoplastic and antibiotic drugs. Formation of mixed polymeric micelles was confirmed using size exclusion chromatography and 1H NMR NOESY. Steady-state fluorescence measurements revealed depressed critical micellar concentrations indicative of a cooperative interaction between component hydrophobic blocks, which was quantified using the pseudophase model for micellization. Steady-state fluorescence measurements indicated that the mixed polymeric micelle cores possess intermediate micropolarity and high microviscosity. Pulsed field gradient spin-echo measurements were used to characterize micellar diffusion coefficients, which agree well with those obtained using dynamic light scattering. NOE spectra suggested that the hydrophobic polymer segments from individual components are in close proximity, giving evidence for the formation of a relatively homogeneous core. Contrary to one-component PEG(5000)-b-PCL(x) micelles, the mixed polymeric micelles could incorporate clinically relevant levels of the poorly water soluble antibiotic, amphotericin B (AmB). AmB encapsulation and release studies revealed an interesting composition-dependent interaction of the drug with the mixed polymeric micelle core.  相似文献   

11.
Block copolymers consisting of poly(γ-benzyl L -glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) as the hydrophilic part were synthesized and characterized. Core shell type nanoparticles of the block copolymers (abbreviated GEG) were prepared by the dialysis method. Under fluorescence spectroscopy measurement, the GEG block copolymers were associated in water to form core shell type nanoparticles as polymeric micelles and the critical micelle concentrations (CMC) values of the block copolymers decreased with increasing PBLG chain length in the block copolymers. Transmission electron microscopy (TEM) observations revealed nanoparticles of spherical shapes. From dynamic light scattering (DLS) study, sizes of nanoparticles of GEG-1 and GEG-2 copolymer were 64.3 ± 28.7 nm and 28.9 ± 7.0 nm. The drug-loading contents of GEG-1 and GEG-2 nanoparticles were 15.2 and 8.3 wt %, respectively. These results indicated that the drug-loading contents were dependent on PBLG chain length in the copolymer. Then, the longer the PBLG chain length, the more the drug-loading contents. Release of clonazepam (CNZ) from the nanoparticles was slower in higher loading contents of CNZ than lower loading contents due to the hydrophobic interaction between PBLG core and CNZ. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 415–423, 1998  相似文献   

12.
We developed a simple route to prepare stabilized micelles and nanovesicles in aqueous solutions. A hydrophobic poly(succinimide) (PSI) was conjugated with the hydrophilic poly(ethylene glycol) (PEG) as a new type of cross‐linkable unit. Spherical aggregates were formed when dissolving the amphiphilic PEG682b‐PSI130 copolymer in aqueous solutions directly, and polymer nanovesicles were prepared by a precipitation‐dialysis method using PEG455b‐PSI130 copolymer. Bifunctional primary amine was added to the micelle or nanovesicle solutions to prepare cross‐linked structures via aminolysis reaction of the succinimide units. The degree of cross‐linking was controlled by adjusting the molar ratio of the cross‐linker to the succinimide units. Increasing the degree of cross‐linking leads to the compaction of the micelle core thus reduced diameter. The cross‐linked polymer micelles or nanovesicles maintained their morphology in extremely diluted solutions because of their structural stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
The solubility of n-pentane gas in aqueous solution of sodium dodecyl sulfate (SDS), SDS-0.1 wt% polyethylene oxide (PEG), SDS-0.1 wt% PEG+NaCl (0.1 mol/l), and SDS-0.1 wt% PEG+NaOH (0.1 mol/l) has been determined at 318.15 K. The concentration of SDS (m(SDS)) is up to 50 mmol/kg. The solubility increases linearly with the concentration of SDS above its critical micelle concentration (CMC) or critical aggregation concentration (CAC), indicating that micelles in the solutions solubilize the gas molecules and the solubility of n-pentane gas in the micelles is independent of the SDS concentration. It was found that the solubilization ability of micelles bound to PEG and free micelles to n-pentane gas is almost the same. The solubility of n-pentane gas in micelle phase is three magnitudes higher than that in the bulk solution. The solubilization property of SDS is changed by the addition of PEG, although the solubilizing effect of the polymer alone is not considerable. NaCl and NaOH affect the solubilization noticeably and increase the interaction strength between SDS and PEG. The standard Gibbs energies for the transfer of n-pentane gas from bulk phase to micelle phase are large negative values, indicating that the hydrocarbon gas prefers to exist in the hydrophobic interior of the micelles.  相似文献   

14.
The phase behavior of poly(ethylene glycol) grafted liposomes (PEG-liposomes) was investigated by differential scanning calorimetry (DSC), dynamic light scattering (DLS) and cryo-transmission electron microscopy (cryo-TEM). PEG-liposomes were prepared from mixtures of dipalmitoyl phosphatidylcholine (DPPC) and distearoyl phosphatidylethanolamine with a covalently attached PEG molecular weight of 2000 (DSPE-PEG2000). From the results of DLS measurements, the coexistence of PEG-liposomes and small molecular assemblies were confirmed at mole fractions of DSPE-PEG2000 above about 0.1. Moreover, it was confirmed that small molecular assemblies were disk micelles by cryo-TEM. However, the phase transition enthalpies of PEG-liposomes were hardly changed according to the DSC measurement, though the mole fraction of the PEG lipid increased. From these results, it was suggested that the phase transition enthalpies hardly changed despite mixed micelles being formed because the bilayer structure of the disk micelle maintains high cooperativity between the DPPC molecules.  相似文献   

15.
Abstract

Amphiphilic photo and redox dual-stimuli-cleavable β-cyclodextrin-ferrocene supramolecules were synthesized through noncovalent interactions of ferrocene (Fc) and β-cyclodextrin (β-CD) born by 5-hydroxy-2-nitrobenzyl alcohol (ONB), a photodegradable linker between the β-CD and poly(4-substituted-?-caprolactone) (PXCL n ) chain. The terminal host–guest MPEG-Fc/β-CD-ONB-PXCL n complex can formed micelles in the aqueous phase. The critical micelle concentration ranged from 3.16 to 11.50?mg L?1. The drug-loading content and drug entrapment efficiency of the complex were lower than those of the parent β-CD. When exposed to ultraviolet irradiation and hydrogen peroxide, complex micelles could dissociate and efficiently release the loaded drug. Nanoparticles exhibited almost no toxicity at concentrations up to 1000?μg mL?1. The uptake of doxorubicin-incorporated micelles by HeLa cells was faster than that of free doxorubicin within the first 5?min. DOX-loaded MPEG45-Fc/β-CD-ONB-PMCL23 micelles effectively inhibited the proliferation of HeLa cells with a half maximal inhibitory concentration (IC50) of 3.8?µg mL?1.  相似文献   

16.
Unimolecular dendritic micelles designed as solubility enhancers were obtained by coupling polyethylene glycol (PEG) to Starburst polyamidoamine (PAMAM) dendrimers. Micelles-750, -2000, and -5000 have a generation 3.0 dendrimer core (32 primary amine end groups) and PEG arms with molecular weights of 750, 2000, and 5000, respectively. The conjugate of dendrimer core and PEG was characterized by MALDI-TOF MS and 1H NMR. 1H NMR was also used to estimate the average number of PEG arms on each dendrimer molecule. A typical hydrophobic compound, pyrene, was sonicated in an excess amount together with micelles at 50 degrees C for 6 h to produce its saturated water solution. The change of the solubility of pyrene was monitored at 334 nm, its maximum adsorption wavelength, by UV-VIS spectra. Concentrated micelles tended to dissolve more pyrene. However, there is no obvious linear relationship between micelle type and the amount of pyrene entrapped within micelles. Micelle-2000 could solubilize more pyrene than micelle-750. It is hypothesized that micelle-5000 did not solubilize more pyrene than micelle-2000 because of the PEG shell disruption by adjacent interpenetration of individual micelles when PEG arm length increased.  相似文献   

17.
采用开环聚合法制备PCL-PEG-PCL共聚物,并将其制成温敏性水凝胶,探究了PEG(聚乙二醇)相对分子质量及质量浓度对水凝胶温敏性的影响.水凝胶的相变温度由翻转小瓶法测定.通过FTIR、热分析仪和SEM等技术对其组成及结构进行表征.以疏水性姜黄素(Cur)为模型药物,制备出载Cur PCL-PEG-PCL水凝胶,并研究其体外释药行为.FTIR结果表明:实验制备的共聚物中含有PCL和PEG的链段.热分析结果表明:在25℃~65℃内水凝胶存在相变过程.SEM结果表明:水凝胶剖面具有疏松多孔.体外释药结果表明:PCL-PEG-PCL水凝胶对Cur具有缓释作用,释药机理符合Higuchi骨架溶蚀模型.  相似文献   

18.
通过苯乙烯和丙烯酸单体的预组装再聚合的制备方法,在不改变共聚物浓度的前提下制备了共聚物胶束溶液和凝胶,探讨了引发剂(偶氮二异丁腈)浓度对生成的共聚物的聚集体结构以及分子结构的影响.利用核磁共振氢谱、扫描电子显微镜和透射电子显微镜等表征了共聚物的分子结构和聚集行为,此外,借助耗散粒子动力学方法模拟了该体系,辅助实验阐明了不同引发剂浓度下生成的共聚物聚集体结构及相对应的共聚物分子结构,在此基础上,利用动态机械热分析和流变学的表征技术,研究了共聚物胶束溶液和凝胶的流变特性.结果表明,在单体浓度不变的情况下,高引发剂浓度时该体系趋于形成平均嵌段长度较长的两嵌段共聚物,生成稳定的胶束溶液,而低引发剂浓度时趋于形成交替共聚物,得到物理凝胶,耗散粒子动力学模拟得到了与实验一致的结果.流变学表征发现胶束体系和凝胶体系均呈现剪切变稀行为,并确定了凝胶体系的凝胶点及恢复性.  相似文献   

19.
温敏性PCL-PEG-PCL水凝胶的合成、表征及蛋白药物释放   总被引:2,自引:0,他引:2  
考察了温敏性PCL-PEG-PCL水凝胶中聚乙二醇(PEG)及聚己内酯(PCL)不同嵌段组成对其溶胶-凝胶相转变温度以及亲水性药物(牛血清白蛋白, BSA)释放速率的影响. 采用开环聚合法, 以辛酸亚锡为催化剂、PEG1500/PEG1000为引发剂, 与己内酯单体发生开环共聚, 合成了一系列具有不同PEG和PCL嵌段长度的PCL-PEG-PCL型三嵌段共聚物. 通过核磁共振氢谱及凝胶渗透色谱对其组成、结构及分子量进行了表征. 共聚物的溶胶-凝胶相变温度由翻转试管法测定. 利用透射电镜、核磁共振氢谱及荧光探针技术证实了该材料在水溶液中胶束的形成. 以BSA为模型蛋白药物, 制备载药水凝胶, 利用microBCA法测定药物在释放介质中的浓度, 研究其体外释放行为. 实验结果表明, 共聚物的溶胶-凝胶相变温度与PCL及PEG嵌段长度紧密相关, 即在给定共聚物浓度情况下, 固定PEG嵌段长度而增加PCL嵌段长度, 会导致相变温度降低; 而固定PCL嵌段长度而增加PEG嵌段长度, 其相变温度相应升高. 水凝胶中蛋白药物的释放速率与疏水的PCL嵌段长度无关, 而与亲水的PEG嵌段长度密切相关, 即PEG嵌段越长, 蛋白药物释放越快.  相似文献   

20.
溶胀胶束是表面活性剂胶束增溶其它物质后使胶束膨胀的一种胶束状态,因其能显著提高难溶性物质的溶解度而备受关注。针对近年来对溶胀胶束的研究进展,综述了溶胀胶束的最大增溶量、增溶过程以及增溶后形貌尺寸的变化等问题,总结了影响胶束增溶作用的因素,厘清了溶胀胶束与微乳液的异同,介绍了溶胀胶束的应用,展望了其应用前景与发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号