首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We initiate a new line of investigation on branching problems for generalized Verma modules with respect to reductive symmetric pairs $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ . In general, Verma modules may not contain any simple module when restricted to a reductive subalgebra. In this article we give a necessary and sufficient condition on the triple $ \left( {\mathfrak{g},\mathfrak{g}',\mathfrak{p}} \right) $ such that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ always contains simple $ \mathfrak{g}' $ -modules for any $ \mathfrak{g} $ -module X lying in the parabolic BGG category $ {\mathcal{O}^\mathfrak{p}} $ attached to a parabolic subalgebra $ \mathfrak{p} $ of $ \mathfrak{g} $ . Formulas are derived for the Gelfand?CKirillov dimension of any simple module occurring in a simple generalized Verma module. We then prove that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ is generically multiplicity-free for any $ \mathfrak{p} $ and any $ X \in {\mathcal{O}^\mathfrak{p}} $ if and only if $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ is isomorphic to (A n , A n-1), (B n , D n ), or (D n+1, B n ). Explicit branching laws are also presented.  相似文献   

2.
We consider the pseudo-euclidean space ${(\mathbb{R}^n, g)}$ , with n ≥  3 and ${g_{ij} = \delta_{ij} \varepsilon_i, \varepsilon_i = \pm 1}$ and tensors of the form ${T = \sum \nolimits_i \varepsilon_i f_i (x) dx_i^2}$ . In this paper, we obtain necessary and sufficient conditions for a diagonal tensor to admit a metric ${\bar{g}}$ , conformal to g, so that ${A_{\bar g}=T}$ , where ${A_{\bar g}}$ is the Schouten Tensor of the metric ${\bar g}$ . The solution to this problem is given explicitly for special cases for the tensor T, including a case where the metric ${\bar g}$ is complete on ${\mathbb{R}^n}$ . Similar problems are considered for locally conformally flat manifolds. As an application of these results we consider the problem of finding metrics ${\bar g}$ , conformal to g, such that ${\sigma_2 ({\bar g })}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })}}$ is equal to a given function. We prove that for some functions, f 1 and f 2, there exist complete metrics ${\bar{g} = g/{\varphi^2}}$ , such that ${\sigma_2 ({\bar g }) = f_1}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })} = f_2}$ .  相似文献   

3.
Let ${(\mathcal {X},\Omega)}$ be a closed polarized complex manifold, g be an extremal metric on ${\mathcal {X}}$ that represents the Kähler class Ω, and G be a compact connected subgroup of the isometry group Isom ${(\mathcal {X}, g)}$ . Assume that the Futaki invariant relative to G is nondegenerate at g. Consider a smooth family ${(\mathcal {M}\to B)}$ of polarized complex deformations of ${(\mathcal {X},\Omega)\simeq (\mathcal {M}_0,\Theta_0)}$ provided with a holomorphic action of G which is trivial on B. Then for every ${t\in B}$ sufficiently small, there exists an ${h^{1,1}(\mathcal {X})}$ -dimensional family of extremal Kähler metrics on ${\mathcal {M}_t}$ whose Kähler classes are arbitrarily close to Θ t . We apply this deformation theory to show that certain complex deformations of the Mukai–Umemura 3-fold admit Kähler–Einstein metrics.  相似文献   

4.
Let S be an orthogonal polytope in ${\mathbb{R}^d}$ . There exists a suitable family ${\mathcal{C}}$ of boxes with ${S = \cup \{C : C {\rm in} \mathcal{C}\}}$ such that the following properties hold:
  • The staircase kernel Ker S is a union of boxes in ${\mathcal{C}}$ . Let ${\mathcal{V}}$ be the family of vertices of boxes in ${\mathcal{C}}$ , and let ${v_o\, \epsilon \mathcal{V}}$ . Point v o belongs to Ker S if and only if v o sees via staircase paths in S every point w in ${\mathcal{V}}$ . Moreover, these staircase paths may be selected to consist of edges of boxes in ${\mathcal{C}}$ . Let B be a box in ${\mathcal{C}}$ with vertices of B in Ker S. Box B lies in Ker S if and only if, for some b in rel int B and for every translate H of a coordinate hyperplane at ${b, b \epsilon}$ Ker (HS). For point p in S, p belongs to Ker S if and only if, for every x in S, there exist some p ? x geodesic λ (p, x) and some corresponding ${\mathcal{C}}$ - chain D containing λ (p, x) such that D is staircase starshaped at p.
  •   相似文献   

    5.
    6.
    Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

    7.
    Given an f-structure ${\varphi}$ on a manifold M, together with a compatible metric g and connection ${\nabla}$ on M, we construct an odd firstorder differential operator D whose principal symbol is of the type considered in [13]. In the special case of a CR-integrable almost ${\mathcal {S}}$ -structure, we show that when ${\nabla}$ is the generalized Tanaka-Webster connection of Lotta and Pastore, the operator D is given by D = ${{\sqrt {2} (\overline {\partial}_b + \overline{\partial}_{b}^{\ast})}}$ , where ${\overline {\partial}_b}$ is the tangential Cauchy-Riemann operator. We then describe two types of “quantization” of manifolds with f-structure that reduce to familiar methods in symplectic geometry in the case that ${\varphi}$ is a compatible almost complex structure, and to the contact quantizations defined in [16] when ${\varphi}$ comes from a contact metric structure.  相似文献   

    8.
    This paper addresses the question of retrieving the triple ${(\mathcal X,\mathcal P, E)}$ from the algebraic geometry code ${\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}$ , where ${\mathcal X}$ is an algebraic curve over the finite field ${\mathbb F_q, \,\mathcal P}$ is an n-tuple of ${\mathbb F_q}$ -rational points on ${\mathcal X}$ and E is a divisor on ${\mathcal X}$ . If ${\deg(E)\geq 2g+1}$ where g is the genus of ${\mathcal X}$ , then there is an embedding of ${\mathcal X}$ onto ${\mathcal Y}$ in the projective space of the linear series of the divisor E. Moreover, if ${\deg(E)\geq 2g+2}$ , then ${I(\mathcal Y)}$ , the vanishing ideal of ${\mathcal Y}$ , is generated by ${I_2(\mathcal Y)}$ , the homogeneous elements of degree two in ${I(\mathcal Y)}$ . If ${n >2 \deg(E)}$ , then ${I_2(\mathcal Y)=I_2(\mathcal Q)}$ , where ${\mathcal Q}$ is the image of ${\mathcal P}$ under the map from ${\mathcal X}$ to ${\mathcal Y}$ . These three results imply that, if ${2g+2\leq m < \frac{1}{2}n}$ , an AG representation ${(\mathcal Y, \mathcal Q, F)}$ of the code ${\mathcal C}$ can be obtained just using a generator matrix of ${\mathcal C}$ where ${\mathcal Y}$ is a normal curve in ${\mathbb{P}^{m-g}}$ which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.  相似文献   

    9.
    We denote by Conc A the ${(\vee, 0)}$ -semilattice of all finitely generated congruences of an algebra A. A lifting of a ${(\vee, 0)}$ -semilattice S is an algebra A such that ${S \cong {\rm Con}_{\rm c} A}$ . The assignment Conc can be extended to a functor. The notion of lifting is generalized to diagrams of ${(\vee, 0)}$ -semilattices. A gamp is a partial algebra endowed with a partial subalgebra together with a semilattice-valued distance; gamps form a category that lends itself to a universal algebraic-type study. The raison d’être of gamps is that any algebra can be approximated by its finite subgamps, even in case it is not locally finite. Let ${\mathcal{V}}$ and ${\mathcal{W}}$ be varieties of algebras (on finite, possibly distinct, similarity types). Let P be a finite lattice. We assume the existence of a combinatorial object, called an ${\aleph_0}$ -lifter of P, of infinite cardinality ${\lambda}$ . Let ${\vec{A}}$ be a P-indexed diagram of finite algebras in ${\mathcal{V}}$ . If ${{\rm Con}_{\rm c} \circ \vec{A}}$ has no partial lifting in the category of gamps of ${\mathcal{W}}$ , then there is an algebra ${A \in \mathcal{V}}$ of cardinality ${\lambda}$ such that Conc A is not isomorphic to Conc B for any ${B \in \mathcal{W}}$ . This makes it possible to generalize several known results. In particular, we prove the following theorem, without assuming that ${\mathcal{W}}$ is locally finite. Let ${\mathcal{V}}$ be locally finite and let ${\mathcal{W}}$ be congruence-proper (i.e., congruence lattices of infinite members of ${\mathcal{W}}$ are infinite). The following equivalence holds. Every countable ${(\vee, 0)}$ -semilattice with a lifting in ${\mathcal{V}}$ has a lifting in ${\mathcal{W}}$ if and only if every ${\omega}$ -indexed diagram of finite ${(\vee, 0)}$ -semilattices with a lifting in ${\mathcal{V}}$ has a lifting in ${\mathcal{W}}$ . Gamps are also applied to the study of congruence-preserving extensions. Let ${\mathcal{V}}$ be a non-semidistributive variety of lattices and let n ≥ 2 be an integer. There is a bounded lattice ${A \in \mathcal{V}}$ of cardinality ${\aleph_1}$ with no congruence n-permutable, congruence-preserving extension. The lattice A is constructed as a condensate of a square-indexed diagram of lattices.  相似文献   

    10.
    In 2009 Schneider obtained stability estimates in terms of the Banach–Mazur distance for several geometric inequalities for convex bodies in an n-dimensional normed space ${\mathbb{E}^n}$ . A unique feature of his approach is to express fundamental geometric quantities in terms of a single function ${\rho:\mathfrak{B} \times \mathfrak{B} \to \mathbb{R}}$ defined on the family of all convex bodies ${\mathfrak{B}}$ in ${\mathbb{E}^n}$ . In this paper we show that (the logarithm of) the symmetrized ρ gives rise to a pseudo-metric d D on ${\mathfrak{B}}$ inducing, from our point of view, a finer topology than Banach–Mazur’s d BM . Further, d D induces a metric on the quotient ${\mathfrak{B}/{\rm Dil}^+}$ of ${\mathfrak{B}}$ by the relation of positive dilatation (homothety). Unlike its compact Banach–Mazur counterpart, d D is only “boundedly compact,” in particular, complete and locally compact. The general linear group ${{\rm GL}(\mathbb{E}^n)}$ acts on ${\mathfrak{B}/{\rm Dil}^+}$ by isometries with respect to d D , and the orbit space is naturally identified with the Banach–Mazur compactum ${\mathfrak{B}/{\rm Aff}}$ via the natural projection ${\pi:\mathfrak{B}/{\rm Dil}^+\to\mathfrak{B}/{\rm Aff}}$ , where Aff is the affine group of ${\mathbb{E}^n}$ . The metric d D has the advantage that many geometric quantities are explicitly computable. We show that d D provides a simpler and more fitting environment for the study of stability; in particular, all the estimates of Schneider turn out to be valid with d BM replaced by d D .  相似文献   

    11.
    12.
    Let ${\mathcal{M}_{g,\epsilon}}$ be the ${\epsilon}$ -thick part of the moduli space ${\mathcal{M}_g}$ of closed genus g surfaces. In this article, we show that the number of balls of radius r needed to cover ${\mathcal{M}_{g,\epsilon}}$ is bounded below by ${(c_1g)^{2g}}$ and bounded above by ${(c_2g)^{2g}}$ , where the constants c 1, c 2depend only on ${\epsilon}$ and r, and in particular not on g. Using this counting result we prove that there are Riemann surfaces of arbitrarily large injectivity radius that are not close (in the Teichmüller metric) to a finite cover of a fixed closed Riemann surface. This result illustrates the sharpness of the Ehrenpreis conjecture.  相似文献   

    13.
    The signature of Brownian motion in $\mathbb R ^{d}$ over a running time interval $[0,T]$ is the collection of all iterated Stratonovich path integrals along the Brownian motion. We show that, in dimension $d\ge 2$ , almost all Brownian motion sample paths (running up to time $T$ ) are determined by their signature over $[0,T]$ .  相似文献   

    14.
    In this paper, we describe a relationship between the simplest examples of arithmetic theta series. The first of these are the weight 1 theta series ${\widehat{\phi}_{\mathcal C}(\tau)}$ defined using arithmetic 0-cycles on the moduli space ${\mathcal C}$ of elliptic curves with CM by the ring of integers ${O_{\kappa}}$ of an imaginary quadratic field. The second such series ${\widehat{\phi}_{\mathcal M}(\tau)}$ has weight 3/2 and takes values in the arithmetic Chow group ${\widehat{{\rm CH}}^1(\mathcal{M})}$ of the arithmetic surface associated to an indefinite quaternion algebra ${B/\mathbb{Q}}$ . For an embedding ${O_\kappa \rightarrow O_B}$ , a maximal order in B, and a two sided O B -ideal Λ, there is a morphism ${j_\Lambda:{\mathcal C} \rightarrow {\mathcal M}}$ and a pullback ${j_\Lambda^*: \widehat{{\rm CH}}^1(\mathcal{M}) \rightarrow \widehat{{\rm CH}}^1(\mathcal C)}$ . Our main result is an expression for the pullback ${j^*_\Lambda \widehat{\phi}_{\mathcal M}(\tau)}$ as a linear combination of products of ${\widehat{\phi}_{\mathcal C}(\tau)}$ ’s and classical weight ${\frac{1}{2}}$ theta series.  相似文献   

    15.
    For ${f,g\in\omega^\omega}$ let ${c^\forall_{f,g}}$ be the minimal number of uniform g-splitting trees needed to cover the uniform f-splitting tree, i.e., for every branch ν of the f-tree, one of the g-trees contains ν. Let ${c^\exists_{f,g}}$ be the dual notion: For every branch ν, one of the g-trees guesses ν(m) infinitely often. We show that it is consistent that ${c^\exists_{f_\epsilon,g_\epsilon}{=}c^\forall_{f_\epsilon,g_\epsilon}{=}\kappa_\epsilon}$ for continuum many pairwise different cardinals ${\kappa_\epsilon}$ and suitable pairs ${(f_\epsilon,g_\epsilon)}$ . For the proof we introduce a new mixed-limit creature forcing construction.  相似文献   

    16.
    We consider diffusion processes $ {{\left( {{{{\underline{\mathrm{X}}}}_d}(t)} \right)}_{{t\geqslant 0}}} $ moving inside spheres $ S_R^d $ ? ? d and reflecting orthogonally on their surfaces. We present stochastic differential equations governing the reflecting diffusions and explicitly derive their kernels and distributions. Reflection is obtained by means of the inversion with respect to the sphere $ S_R^d $ . The particular cases of Ornstein–Uhlenbeck process and Brownian motion are examined in detail. The hyperbolic Brownian motion on the Poincaré half-space ? d is examined in the last part of the paper, and its reflecting counterpart within hyperbolic spheres is studied. Finally, a section is devoted to reflecting hyperbolic Brownian motion in the Poincaré disc D within spheres concentric with D.  相似文献   

    17.
    Let V be a two-dimensional absolutely irreducible ${\overline{\mathbb Qp}}$ -representation of ${{\rm Gal}(\overline{\mathbb Qp}/\mathbb Qp)}$ and let ${\prod(V)}$ be the ${{\rm GL}_2(\mathbb Qp)}$ Banach representation associated by Colmez??s p-adic Langlands correspondence. We establish a link between the action of the Lie algebra of ${{\rm GL}_2(\mathbb Qp)}$ on the locally analytic vectors ${\prod(V)^{\rm an}}$ of ${\prod(V)}$ , the connection ${\nabla}$ on the ${(\varphi, \Gamma)}$ -module associated to V and the Sen polynomial of V. This answers a question of Harris, concerning the infinitesimal character of ${\prod(V)^{\rm an}}$ . Using this result, we give a new proof of a theorem of Colmez, stating that ${\prod(V)}$ has nonzero locally algebraic vectors if and only if V is potentially semi-stable with distinct Hodge?CTate weights.  相似文献   

    18.
    In this paper we study cluster algebras $\mathcal{A}$ of type $A_2^{(1)}$ . We solve the recurrence relations among the cluster variables (which form a T-system of type $A_2^{(1)}$ ). We solve the recurrence relations among the coefficients of $\mathcal{A}$ (which form a Y-system of type $A_2^{(1)}$ ). In $\mathcal{A}$ there is a natural notion of positivity. We find linear bases B of $\mathcal{A}$ such that positive linear combinations of elements of B coincide with the cone of positive elements. We call these bases atomic bases of $\mathcal{A}$ . These are the analogue of the “canonical bases” found by Sherman and Zelevinsky in type $A_{1}^{(1)}$ . Every atomic basis consists of cluster monomials together with extra elements. We provide explicit expressions for the elements of such bases in every cluster. We prove that the elements of B are parameterized by ?3 via their g-vectors in every cluster. We prove that the denominator vector map in every acyclic seed of $\mathcal{A}$ restricts to a bijection between B and ?3. We find explicit recurrence relations to express every element of $\mathcal{A}$ as linear combinations of elements of B.  相似文献   

    19.
    In this paper, we prove stability of contact discontinuities for full Euler system. We fix a flat duct ${\mathcal{N}_0}$ of infinite length in ${\mathbb{R}^2}$ with width W 0 and consider two uniform subsonic flow ${{U_l}^{\pm}=(u_l^{\pm}, 0, pl,\rho_l^{\pm})}$ with different horizontal velocity in ${\mathcal{N}_0}$ divided by a flat contact discontinuity ${\Gamma_{cd}}$ . And, we slightly perturb the boundary of ${\mathcal{N}_0}$ so that the width of the perturbed duct converges to ${W_0+\omega}$ for ${|\omega| < \delta}$ at ${x=\infty}$ for some ${\delta >0 }$ . Then, we prove that if the asymptotic state at left far field is given by ${{U_l}^{\pm}}$ , and if the perturbation of boundary of ${\mathcal{N}_0}$ and ${\delta}$ is sufficiently small, then there exists unique asymptotic state ${{U_r}^{\pm}}$ with a flat contact discontinuity ${\Gamma_{cd}^*}$ at right far field( ${x=\infty}$ ) and unique weak solution ${U}$ of the Euler system so that U consists of two subsonic flow with a contact discontinuity in between, and that U converges to ${{U_l}^{\pm}}$ and ${{U_r}^{\pm}}$ at ${x=-\infty}$ and ${x=\infty}$ respectively. For that purpose, we establish piecewise C 1 estimate across a contact discontinuity of a weak solution to Euler system depending on the perturbation of ${\partial\mathcal{N}_0}$ and ${\delta}$ .  相似文献   

    20.
    We use certain strong Q-reducibilities, and their corresponding strong positive reducibilities, to characterize the hyperimmune sets and the hyperhyperimmune sets: if A is any infinite set then A is hyperimmune (respectively, hyperhyperimmune) if and only if for every infinite subset B of A, one has ${\overline{K}\not\le_{\rm ss} B}$ (respectively, ${\overline{K}\not\le_{\overline{\rm s}} B}$ ): here ${\le_{\overline{\rm s}}}$ is the finite-branch version of s-reducibility, ??ss is the computably bounded version of ${\le_{\overline{\rm s}}}$ , and ${\overline{K}}$ is the complement of the halting set. Restriction to ${\Sigma^0_2}$ sets provides a similar characterization of the ${\Sigma^0_2}$ hyperhyperimmune sets in terms of s-reducibility. We also show that no ${A \geq_{\overline{\rm s}}\overline{K}}$ is hyperhyperimmune. As a consequence, ${\deg_{\rm s}(\overline{K})}$ is hyperhyperimmune-free, showing that the hyperhyperimmune s-degrees are not upwards closed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号