首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnesium matrix composites reinforced by calcium phosphate could not show the desired effect on the magnesium breakdown rate. Rapid disintegration rate limited the magnesium alloys used as biodegradable implant material. The rate of degradation can be minimized and biological activity can be improved in the magnesium alloy by Hydroxyapatite (HA) coating with the improvement of bone induction and conduction abilities. Various alkali post-treatment and conversion coating methods are applied to deposit HA coatings and biocompatible dicalcium phosphate dihydrate (DCPD) on magnesium alloy so that corrosion resistance and surface biocompatibility can be improved to be used in bone tissue engineering applications. Magnesium's corrosion resistance will weaken its antibacterial properties, which are linked to and proportional to the alkaline pH at the time of breakdown. The goal of this study is to bring together and compare contemporary research on different coatings on magnesium and related alloys in relation to antibacterial functionalized activities. A though review has been performed on in vivo and in vitro cytocompatibility, material property, corrosion resistance, and antibacterial properties of the coatings. Increased degradation behavior, biocompatibility, and bioactivity have been achieved following multiple procedures such as alkali treatment with HA electrochemical deposition on magnesium alloy. Multifunctional coatings can make safe and bioactive magnesium alloy surfaces for biodegradable implant applications.  相似文献   

2.
The corrosion of AZ91D magnesium alloy has received extensive attention due to the continuous expansion of its application field in recent years. However, the corrosion of AZ91D magnesium alloy in distilled water is relatively few. In this paper, the corrosion behavior of AZ91D magnesium alloy was studied in distilled water by electrochemical tests in combination with weight loss and surface analysis methods. The results indicated that the corrosion rate of AZ91D magnesium alloy increased with the increase of temperature and immersion time. The increase of the corrosion rate of AZ91D magnesium alloy with the increase of immersion time might be attributed to the damage of the structure of corrosion product film by hydrogen evolution, significantly accelerating the anodic process of AZ91D magnesium alloy. It was interesting that, in distilled water, the EIS of AZ91D magnesium alloy excluded an inductive arc in the low frequency region, which indicated that there was no the adsorption and desorption of aggressive ions or the damage and repair of film. The corrosion product film of AZ91D magnesium alloy in distilled water was composed of a compact inner corrosion product film and a loose outer corrosion product film.  相似文献   

3.
The surface characteristics and corrosion behaviour of the AZ31 magnesium alloy exposed to a high relative humidity (RH) atmosphere were investigated. During the first 15 days of humidity test at 98% RH and 50 °C, a significant increase of magnesium carbonate and a decrease of magnesium oxide were detected on the surface film by XPS; after this stage, increased exposure times did not produce substantial changes on the relative amounts of these compounds. The surface film of commercially pure magnesium, also examined for comparison purposes, revealed more magnesium carbonate and less magnesium oxide compared with the AZ31 alloy. Unlike the AZ31 alloy, the surface of pure Mg disclosed almost complete substitution of MgO by magnesium carbonate after 30 days of exposure time. Mass gain values of tested specimens and scanning electron microscope characterisation of corroded surfaces indicated lower corrosion susceptibility of the AZ31 alloy compared with the commercially pure Mg, suggesting superior chemical stability of the oxide/hydroxide film formed over the magnesium–aluminium alloy surface. XPS and energy dispersive X‐ray (EDX) analyses did not revealed any substantial enrichment of aluminium in the corrosion products film on the AZ31 alloy after 30 days of testing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The efficiency of stearate as a corrosion inhibitor for magnesium alloy ZE41 has been studied in sodium sulfate medium, employing electrochemical techniques like potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of polarization study imply that stearate functions as a mixed-type corrosion inhibitor with a predominant anodic control. The adsorption of stearate on alloy surface is found to obey the Langmuir adsorption isotherm. The proposed inhibition mechanism involved adsorption of stearate onto metal surface, followed by precipitation of magnesium stearate within the microdefects of Mg(OH)2 surface film which enhanced the barrier effect of an otherwise porous partially protective film.  相似文献   

5.
钨酸盐对镁合金在3.5%NaCl介质中的缓蚀作用   总被引:5,自引:0,他引:5  
研究钨酸钠对AZ61镁合金在3.5%NaC l腐蚀介质中的缓蚀作用.电化学阻抗谱(EIS)、Tafel极化曲线、扫描电子显微镜(SEM)等测试表明,钨酸钠缓蚀剂可有效抑制镁合金在NaC l介质中的腐蚀,当钨酸钠浓度为0.01 mol.L-1可达到较好的缓蚀效果,缓蚀效率达75.5%.钨酸钠可参与镁合金表面膜的形成,使表面膜更致密,从而抑制镁合金的腐蚀;其缓蚀作用属于阳极抑制型缓蚀机理.  相似文献   

6.
AZ91镁合金表面稀土转化膜的制备及耐蚀性能研究   总被引:41,自引:5,他引:41  
采用在镁合金表面形成无毒、无污染的稀土铈转化膜的方法解决AZ91镁合金表面的腐蚀问题。确定了最佳成膜工艺参数,讨论了处理液的浓度、成膜温度和成膜时间等因素对转化膜耐蚀性的影响。利用湿热实验、阳极极化曲线的测定等实验方法评价了转化膜对镁合金表面的防护作用。结果表明,在潮湿温热条件下稀土铈转化膜试样仍能保持膜层的完整性并具有较高的覆盖度,腐蚀现象不明显。腐蚀电势升高,出现钝化现象,腐蚀电流密度下降,稀土铈转化膜可以提高AZ91镁合金的耐蚀性能。用扫描电镜观察了膜的微观形貌,稀土铈转化膜是由基膜和附着的细小颗粒组成,最佳工艺形成的铈转化膜无破碎现象,对AZ91镁合金表面的腐蚀过程的发生有明显的抑制作用。  相似文献   

7.
This study has been conducted to investigate the effects of plastic deformation of an AA2024 aluminium alloy by cold rolling to 25%, 50% and 75% and then heat-treating and naturally ageing for 20 days to T4 on the microstructure and the electrochemical behavior. To characterize the microstructural modifications different techniques have been applied such as X-ray Diffraction (XRD) to demonstrate the intermetallic phases formed, Optical Microscopy (OM) and Scanning Electronic Microscopy (SEM) to evaluate their microstructures and grain size. Moreover, the surface topography has been measured to establish the roughness effect on the mechanical response when subjected to tensile, fatigue and micro-indentation tests. The corrosion behaviour was evaluated by Potentiodynamic Polarization Scanning, Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The results revealed that cold-rolled samples with 50% plastic deformation show a smoother topography and exhibit the best compromise between mechanical and corrosion resistance.  相似文献   

8.
乌洛托品对模拟汽车冷却液中镁合金的缓蚀作用   总被引:2,自引:0,他引:2  
镁合金具有高比强度、比刚度以及良好的铸造性、切削性、抗冲击减震性、导热性、无毒性和可回收性等优点,被认为是汽车工业中极好的铝合金及有色金属替代品[1]。用镁合金制造汽车部件,特别是发动机等大重量部件,可以大大减轻车身重量,进而降低能源消耗和废气污染。但是由于镁合  相似文献   

9.
This work demonstrates the potential of multivariate image analysis methods in the extraction of useful, problem dependent information from SIMS images. Specific algorithms have been developed to classify SIMS micrographs manually as well as automatically. A feature selection has been achieved by means of principal component analysis with a subsequent image classification.As an application example for these improved digital image processing tools chemical phases within a soldered industrial metal sample have been identified. This is of highly practical value as it was assumed that during the soldering process inhomogeneities occur along the joint site which cause a cracking of the brazed material under mechanical strain conditions.  相似文献   

10.
Because controlling the corrosion rate of magnesium metal will be crucial to the success of biomedical implants containing pure magnesium or magnesium alloys, many ways have been sought to improve in vitro tests to analyze corrosion rates, and also to identify new methods of preparing or post‐processing magnesium. In this work, for an in vitro assay, we explored the use of a commercially available conductivity sensor to study magnesium corrosion under cell culture conditions that duplicate many physiologically appropriate parameters. With this sensor, we studied the corrosion of two previously untested magnesium single crystal samples that differed in surface treatments that could alter corrosion rates. The results show that the relative conductivity changes in (mS/cm) over the total time of immersion were proportional to the corrosion rates in (mm/y) and also to the total magnesium released, as detected by inductively coupled plasma mass spectrometry (ICP‐MS).  相似文献   

11.
SiO2 coatings onto stainless steel substrates have been prepared by sol-gel in order to study the performance and mechanism of attack in different corrosive solutions. The electrochemical behaviour of the samples has been evaluated by Electrochemical Impedance Spectroscopy using NaCl and HCl as electrolytes. Comparative tests have been performed on samples with one and two silica layers as well as on uncoated ones. SiO2 coatings produce no important protection of stainless steels subjected to electrochemical corrosion. This behaviour may be explained by micropores and microcracks produced during the coating sintering.  相似文献   

12.
Discharge and corrosion performances of magnesium alloy anode sheets with content of Hg 1∼3 wt % were investigated. The results show that adding the element of Hg can promote discharge performance of magnesium alloy sheet in two ways: (i) adding an appropriate amount of Hg could inhibit the microgalvanic corrosion and prevent the formation of thick corrosion product film on the matrix surfaces, (ii) the second phase of Mg3Hg could activate magnesium matrix, improve peak voltage and effective discharge time. However, when the content of Hg exceeded tolerance limit, the corrosion rate of magnesium sheets would be accelerated greatly. The activation mechanism and the role of Hg in the process of corrosion product falling off were also investigated. The magnesium alloy anode sheets with Hg content between 1.65 and 2.16 wt % have the best discharge performance.  相似文献   

13.
As an optimum shell material, AZ80 magnesium alloys are widely applied in the 3C (computers, communications and consumer electronics) industries. The case of 3C products corroded by a sweaty hand has been simulated and the corrosion characters have been investigated by ellipsometric technology. Thickness variation of corrosive medium film on a Mg alloy surface was monitored. Surface structure of a corrosion layer was described with a three‐layer optical model (substrate—EMA—Cauchy) and thickness of each layer for different soaking time was obtained by fitting experimental data with the model. The corrosion product films with a refractive index of 1.45–1.62, loose corrosion product layer, can only provide limited protection to the substrate when a Mg alloy surface is corroded by sweat again. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
DTA has been successfully employed to study the hot corrosion behaviour of chromium and nickel powders and Nimonic 80A alloy samples in the presence of corrodants such as NaCl and Na2SO4. The DTA data indicate a large high-temperature exotherm due to oxidation in air; the onset of oxidation occurs at much lower temperatures when additional oxidants are added. The results also show that NaCl attacks chromium much more aggressively than does either Na2SO4 or the salt mixture. The reverse has been observed for nickel, i.e. enhanced corrosion in the presence of Na2SO4 and the mixtures. Both Cr and Ni are oxidized to their respective oxides, via chloride formation in the presence of NaCl, and via sulphide formation in the presence of Na2SO4. Sodium chromate formation was confirmed with chromium in addition to the above compounds in the presence of sodium salts. On the other hand, the DTA results on Nimonic 80A alloy samples indicate that the corrosion attack is negligible as long as the salt is in the solid form, but once the salt is molten it triggers catastrophic corrosion. The mechanism of hot corrosion is discussed.  相似文献   

15.
阳极氧化AZ91D镁合金在氯化钠稀溶液中的腐蚀行为   总被引:1,自引:1,他引:0  
张丽君  张昭  张鉴清 《物理化学学报》2008,24(10):1831-1838
利用盐雾实验、极化曲线扫描、电化学阻抗谱和电化学噪声技术等电化学研究方法结合扫描电镜表面观测技术对AZ91D镁合金氧化膜在1%(w)氯化钠溶液中的耐蚀性能进行了评价. 结果表明, 氧化前后的镁合金腐蚀行为发生明显改变, 如未封孔的阳极氧化膜耐中性5%氯化钠盐雾试验时间超过200 h; 氧化后的镁合金自腐蚀电位明显正移, 点蚀诱导期延长; 阳极氧化膜的高频阻抗约为裸露镁合金的数千倍, 这些变化证明阳极氧化处理使镁合金获取了十分优异的耐蚀性能. 首次利用分形维数Df的变化规律初步描述氧化后AZ91D镁合金的腐蚀过程. 可以发现随着浸泡时间的延长, Df呈现出初期快速增长, 随后出现波动, 最后稍有降低的变化过程. 这种现象对应于氧化后AZ91D 镁合金在1%氯化钠溶液中腐蚀的三个阶段.  相似文献   

16.
Calcium-phosphate compounds(Ca-P) coating was prepared on an Mg-Al alloy(AZ60). Biodegradation of Ca-P coated magnesium alloy was evaluated in simulated body fluid(SBF) by examining the changes in magnesium ion concentration and pH value, which indicated that the Ca-P coating on magnesium alloy strongly affected the corrosion of magnesium alloy. Osteoblast MC3T3-E1 cells were utilized to investigate the cellular cytocompatibility. The cytocompatibility was measured by carrying out a series of tests, such as cholecystokinin-octapeptide(CCK-8) test, alkaline phosphatase activity(ALP) test, cellular morphology of hematoxylin-eosin(HE) staining and the induction of apoptosis. It was found that the cell function showed better in the Ca-P coated Mg-alloy extract than in the uncoated magnesium alloy extract. In summary, the results indicate that the Ca-P coating can improve the corrosion resistance of magnesium alloy and elevate cellular proliferation and differentiation of osteoblast MC3T3-E1 cells.  相似文献   

17.
《Comptes Rendus Chimie》2008,11(9):1043-1054
Magnesium, due to its biocompatibility, a necessity in metabolic processes, and better mechanical properties than polymer, is an ideal candidate for biodegradable implants. The main actual limitation for the use of magnesium alloys is its too fast degradation rate in the physiological environment. The corrosion behaviour of an Mg–Y–RE magnesium alloy in two different physiological solutions (artificial plasma (AP) and simulated body fluid (SBF)) was investigated, using electrochemical impedance spectroscopy (EIS).The investigation showed that SBF is significantly more aggressive than AP with regard to the polished surface. A large difference in the corrosion rate and mechanisms (uniform or localized corrosion) is observed as a function of the buffer capacity of the media, but also of the carbonate and chloride content. For temporary surface protection, the formation of an approximately 350–400 nm dense hydroxide layer is obtained by electrochemical anodising. An increase of the corrosion resistance of the treated alloy for both physiological solutions is obtained, and this is especially noticeable for a long immersion time in AP.  相似文献   

18.
The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed.  相似文献   

19.
十二烷基苯磺酸钠在AZ31镁合金表面的吸附及其缓蚀作用   总被引:4,自引:0,他引:4  
采用电化学阻抗谱(EIS)和极化曲线研究十二烷基苯磺酸钠(SDBS)对AZ31镁合金在3.5%(w, 质量分数)NaCl腐蚀介质中的吸附行为及缓蚀作用. 结果表明: SDBS可有效抑制AZ31镁合金在NaCl介质中的腐蚀, 其浓度为0.008 mol·L-1时缓蚀效率可达90%以上; 升高温度并不利于提高SDBS的缓蚀效率. SDBS在AZ31镁合金表面主要发生物理吸附, 吸附过程为放热、熵增的自发过程, 近似符合Langmuir单分子层吸附模型; SDBS为混合抑制型缓蚀剂, 但主要抑制阳极反应.  相似文献   

20.
Magnesium alloys are promising biomaterials as biodegradable implant for orthopedic applications. However, their low corrosion resistance and poor bioactivity have prohibited their implant applications. In order to enhance these two properties, a nano‐grain merwinite coating was prepared on magnesium alloy. Its corrosion and the bioactivity behavior were characterized with electrochemical and immersion tests. The results showed that the nano‐grain merwinite coating can improve both the corrosion resistance and the bioactivity of the magnesium alloy making it an appropriate material for biodegradable bone implants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号