首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our previous work we investigated electronically non-adiabatic effects in using crossed molecular beam scattering coupled with velocity mapped ion imaging. The prior experiments placed limits on the cross-section for electronically non-adiabatic spin-orbit excitation and electronically non-adiabatic spin-orbit quenching . In the present work, we investigate electronically non-adiabatic spin-orbit quenching for which is the required first step for the reaction of Cl* to produce ground state HCl+H products. In these experiments we collide Cl (2P) with H2 at a series of fixed collision energies using a crossed molecular beam machine with velocity mapped ion imaging detection. Through an analysis of our ion images, we determine the fraction of electronically adiabatic scattering in Cl* +H2, which allows us to place limits on the cross-section for electronically non-adiabatic scattering or quenching. We determine the following quenching cross-sections σ quench(2.1 kcal/mol) = 26 ± 21 ?2, σ quench(4.0 kcal/mol) = 21 ± 49 ?2, and σ quench(5.6 kcal/mol) = 14 ± 41 ?2.  相似文献   

2.
We calculate the (parity-violating) spin-rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Our result for np spin rotation is $\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), while for nd spin rotation we obtain $\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), where the g (X-Y), in units of $MeV^{ - \frac{3} {2}}$MeV^{ - \frac{3} {2}}, are the presently unknown parameters in the leading-order parity-violating Lagrangian. Using naıve dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be $\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m}$\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m} for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. An appendix contains the relevant partial-wave projectors of the three-nucleon system.  相似文献   

3.
万明杰  李松  金成国  罗华锋 《物理学报》2019,68(6):63103-063103
本文采用多组态相互作用及Davidson修正方法和全电子基组计算了SH~-阴离子的X~1∑~+,a~3∏和A~1∏态的势能曲线、电偶极矩和跃迁偶极矩.计算的光谱常数与实验值及已有的理论值符合得很好.在计算中考虑了自旋-轨道耦合效应.计算得到a~3∏_1(v'=0)?X~1∑_(0+)~+(v"=0)和A~1∏_1(v'=0)?X~1Σ_(0+)~+(v"=0)跃迁具有高对角分布的弗兰克-康登因子,分别为0.9990和0.9999;计算得到a~3∏_1和A~1∏_1态的自发辐射寿命分别为1.472和0.188 ms.A~1∏_1?X~1∑_(0+)~+跃迁存在中间态a~3∏_(0+)和a~3∏_1,但中间态对激光冷却SH~-阴离子的影响可以忽略.分别利用a~3∏_1(v'=0)? X~1∑_(0+)~+(v"=0)和A~1∏_1(v'=0)? X~1∑_(0+)~+(v"=0)跃迁构建了准闭合的能级系统,冷却所需的激光波长分别为492.27和478.57 nm.最后预测了激光冷却SH~-阴离子能达到的多普勒温度和反冲温度.这些结果为进一步实验提供了理论参数.  相似文献   

4.
The properties of the high-field polynomialsL n (u) for the one-dimensional spin 1/2 Ising model are investigated. [The polynomialsL n (u) are essentially lattice gas analogues of the Mayer cluster integralsb n (T) for a continuum gas.] It is shown thatu ?1 L n (u) can be expressed in terms of a shifted Jacobi polynomial of degreen?1. From this result it follows thatu ?1 L n (u); n=1, 2,... is a set of orthogonal polynomials in the interval (0, 1) with a weight functionω(u)=u, andu ?1 L n (u) hasn?1 simple zerosu n (v); v=1, 2,...,n?1 which all lie in the interval 0<u<1. Next the detailed behavior ofL n (u) asn→∞ is studied. In particular, various asymptotic expansions forL n (u) are derived which areuniformly valid in the intervalsu<0, 0<u<1, andu>1. These expansions are then used to analyze the asymptotic properties of the zeros {u n (v); v=1, 2,...,n?1}. It is found that $$\begin{array}{*{20}c} {u_n (v) \sim \tfrac{1}{4}({{j_{1,v} } \mathord{\left/ {\vphantom {{j_{1,v} } n}} \right. \kern-\nulldelimiterspace} n})^2 [1 - ({{j_{1,v}^2 } \mathord{\left/ {\vphantom {{j_{1,v}^2 } {12}}} \right. \kern-\nulldelimiterspace} {12}})n^{ - 1} + ({{j_{1,v}^2 } \mathord{\left/ {\vphantom {{j_{1,v}^2 } {700)( - 3 + 2j_{1,v}^2 )n^{ - 4} }}} \right. \kern-\nulldelimiterspace} {700)( - 3 + 2j_{1,v}^2 )n^{ - 4} }}} \\ { + ({{j_{1,v}^2 } \mathord{\left/ {\vphantom {{j_{1,v}^2 } {20160)(40 + 4j_{1,v}^2 - j_{1,v}^4 }}} \right. \kern-\nulldelimiterspace} {20160)(40 + 4j_{1,v}^2 - j_{1,v}^4 }})n^{ - 6} + \cdot \cdot \cdot ]} \\ {u_n (n - v) \sim 1 - ({{j_{0,v}^2 } \mathord{\left/ {\vphantom {{j_{0,v}^2 } 4}} \right. \kern-\nulldelimiterspace} 4})n^{ - 2} + ({{j_{0,v}^2 } \mathord{\left/ {\vphantom {{j_{0,v}^2 } {48)( - 2 + j_{0,v}^2 )n^{ - 4} }}} \right. \kern-\nulldelimiterspace} {48)( - 2 + j_{0,v}^2 )n^{ - 4} }}} \\ { + ({{j_{0,v}^2 } \mathord{\left/ {\vphantom {{j_{0,v}^2 } {2880)(2 + 9j_{0,v}^2 - 2j_{0,v}^4 )n^{ - 6} + \cdot \cdot \cdot }}} \right. \kern-\nulldelimiterspace} {2880)(2 + 9j_{0,v}^2 - 2j_{0,v}^4 )n^{ - 6} + \cdot \cdot \cdot }}} \\ \end{array} $$ asn→∞v fixed, wherej k,v denotes thevth zero of the Bessel functionJ k(z)  相似文献   

5.
The temperature dependences of the quenching rate constants of the states N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}}${\rm C} \ {^{3}{ \rm \Pi }_{u}} v=0,1) by N2 (X) and of the state N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0) by O2 (X) are studied. Time-resolved light emission from the gas was analyzed in the temperature range from 300 K to 210 K keeping the gas at constant density. In case of quenching by N2 (X), the quenching rate constant for the vibrational level v= 0 increases by (13 ±3)% with gas cooling whereas the quenching rate constant for v= 1 decreases by (5.0 ±2.5)% in this temperature range. For quenching by O2 (X), the quenching rate constant decreases by (3 ±2)% with gas cooling. The temperature variation of the N2 (C 3Πu v=0) emission intensity for pure nitrogen and dry air are calculated using the obtained quenching rate constants and is compared with the experimental data available in the literature.  相似文献   

6.
7.
The N-dependence of the non-relativistic bosonic ground state energy ? B (N) is studied for quantum N-body systems with either Coulomb or Newton interactions. The Coulomb systems are “bosonic atoms,” with their nucleus fixed, and it is shown that $\mathcal {E}_{{C}}^{{B}}(N)/\mathcal {P}_{{C}}(N)$ grows monotonically in N>1, where ? C (N)=N 2(N?1). The Newton systems are “bosonic stars,” and it is shown that when the Bosons are centrally attracted to a fixed gravitational “grain” of mass M>0, and N>2, then $\mathcal {E}_{{N}}^{{B}}(N;M)/\mathcal {P}_{\!{N}}(N)$ grows monotonically in N, where ? N (N)=N(N?1)(N?2); in the translation-invariant problem (M=0), it is shown that when N>1 then $\mathcal {E}_{{N}}^{{B}}(N;0)/\mathcal {P}_{{C}}(N)$ grows monotonically in N, with ? C (N) from the Coulomb problem. Some applications of the new monotonicity results are discussed.  相似文献   

8.
Let A 1 , A 2 , A 3 A 4 be four observables, the compatible observables among them being (A 1 , A 3 ), (A 1 , A 4 ), (A 2 , A 3 ), (A 2 , A 4 ). In order that the empirical data be reproducible by a quantum or a classical theory, the two-point correlation functions $$\{ C_{ij} = \left\langle {A_i A_j } \right\rangle :i,j a compatible pair\} $$ must necessarily satisfy $$|X_{13} X_{14} - X_{23} X_{24} | \leqslant \left( {1 - X_{13} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \left( {1 - X_{14} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \left( {1 - X_{23} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \left( {1 - X_{24} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} (*)$$ where Xij=CijC ii ?1/2 C jj ?1/2 . In the case ofGaussian data, this inequality is alsosufficient; If (*) holds, there is a Gaussian joint distribution for A 1 , A 2 , A 3 , A 4 which reproduces the Gaussian data for compatible pairs. It follows that Bell's inequality is satisfied by all true-false propositions about the Gaussian data. A further consequence of the analysis is thatquantum Gaussian fields satisfy Bell's inequality for all true-false propositions aboutfield measurements. The maximum violation of (*) corresponds to Rastall's example in the case of two-valued observables.  相似文献   

9.
Moments of the hadronic invariant mass and of the lepton energy spectra in semileptonic B decays have been determined with the data recorded by the DELPHI detector at LEP. From measurements of the inclusive b-hadron semileptonic decays, and imposing constraints from other measurements on b- and c-quark masses, the first three moments of the lepton energy distribution and of the hadronic mass distribution, have been used to determine parameters which enter into the extraction of |Vcb| from the measurement of the inclusive b-hadron semileptonic decay width. The values obtained in the kinetic scheme are: and include corrections at order 1/mb3. Using these results, and present measurements of the inclusive semileptonic decay partial width of b-hadrons at LEP, an accurate determination of |Vcb| is obtained: Received: 26 April 2005, Revised: 16 September 2005, Published online: 16 November 2005  相似文献   

10.
A search for double electron capture of 106Cd was performed at the Modane Underground Laboratory (4800 m w.e.) using a low-background and high-sensitivity multidetector spectrometer TGV-2 (Telescope Germanium Vertical). New limits on β +/EC, EC/EC decays of 106Cd were obtained from preliminary calculations of experimental data accumulated for 4800 h of measurement of 10 g of 106Cd with enrichment of 75%. They are > 9.1 × 1018 yr, > 1.9 × 1019 yr for transitions to the first 2+, 511.9 keV excited state of 106Pd, and > 1.3 × 1019 yr, > 6.2 × 1019 yr for transitions to the ground 0+ state of 106Pd. All limits are given at 90% C.L. The text was submitted by the authors in English.  相似文献   

11.
A model of the DN interaction is presented which is developed in close analogy to the meson-exchange [`(K)] \bar{{K}} N potential of the Jülich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (r \rho , w \omega exchange and higher-order box diagrams involving D * N , D D \Delta , and D * D \Delta intermediate states. The coupling of DN to the p \pi Lc \Lambda_{c}^{} and p \pi Sc \Sigma_{c}^{} channels is taken into account. The interaction model generates the Lc \Lambda_{c}^{}(2595) -resonance dynamically as a DN quasi-bound state. Results for DN total and differential cross sections are presented and compared with predictions of two interaction models that are based on the leading-order Weinberg-Tomozawa term. Some features of the Lc \Lambda_{c}^{}(2595) -resonance are discussed and the role of the near-by p \pi Sc \Sigma_{c}^{} threshold is emphasized. Selected predictions of the orginal [`(K)] \bar{{K}} N model are reported too. Specifically, it is pointed out that the model generates two poles in the partial wave corresponding to the L \Lambda(1405) -resonance.  相似文献   

12.
The Doppler-free laser-spectroscopic frequency measurement of Doppler-shifted optical lines in forward and backward direction of a fast ion beam permits a sensitive test of the relativistic Doppler-formula and, hence, the relativistic time dilation factor . An experiment on metastable 7Li+, stored at a velocity of v = 0.064c in the Heidelberg heavy-ion storage ring TSR, has confirmed time dilation with unprecedented accuracy. Latest tests at two different ion-velocities (v = 0.03c and v = 0.064c) will enhance these measurements. An improved version of this experiment will be carried out at the experimental storage ring (ESR) at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt. The ESR permits 7Li+ to be stored at v = 0.33c which promises an improvement of the sensitivity to deviations from γ SR by an order of magnitude. A first test at the ESR has shown the feasibility for this kind of experiment.  相似文献   

13.
Er-Yb Codoped Ferroelectrics for Controlling Visible Upconversion Emissions   总被引:1,自引:0,他引:1  
Under a 980 nm laser pumping, quenching of green upconversion (UC) emission accompanied with enhancement of red UC emission observed was dominated by the energy back-transfer (EBT) process in Er3+ and Yb3+ co-doped PbTiO3, BaTiO3, and SrTiO3 polycrystalline powders. The efficiency of the EBT process depends not only on Yb3+ concentration but also on level match of the doped Er3+ and Yb3+ ions caused by the crystal fields with different symmetries. Our UC emission spectra and X-ray diffraction confirm that the centrosymmetric crystal field arising from reducing tetragonality causes level match of transition of Er3+ and of Yb3+. This level match is responsible for enhancing red UC emission.  相似文献   

14.
Laser-Induced Breakdown Spectroscopy (LIBS) of DNA bases Guanine and Adenine was studied using a high-power CO2 pulsed laser (λ=10.591 μm, τ FWHM=64 ns and fluences ranging from 25 to 70 J/cm2). The strong emission of the adenine and guanine plasma, collected using a high-resolution spectrometer, at medium-vacuum conditions (4 Pa) and at 1 mm from the target, exhibits excited molecular bands of CN (B2 Σ +–X2 Σ +) and excited neutral H and ionized N+ and C+. The medium-weak emission is due to excited species C2+, C3+, N, O, O+, O2+ and molecular band systems of $\mathrm{C}_{2}(\mathrm{d}^{3}\varPi_{\mathrm{g}}\mbox{--}\mathrm{a}^{3}\varPi_{\mathrm{u}};\ \mathrm{D}^{1}\varSigma_{\mathrm{u}}^{+}\mbox{--}\mathrm{X}^{1}\varSigma_{\mathrm{g}}^{+})$ , OH(A2 Σ +–X2 Π), NH(A3 Π–X3 Σ ?), CH(A2 Π–X2 Π), $\mathrm{N}_{2}^{+}(\mathrm{B}^{2}\varSigma_{\mathrm{u}}^{+}\mbox{--} \mathrm{X}^{2}\varSigma_{\mathrm{g}}^{+})$ and N2(C3 Π u–B3 Π g). We focus our attention on the temporal evolution of different atomic/ionic and molecular species. The velocity distributions for various (different) species were obtained from time-of-flight (TOF) measurements. Intensities of some lines from C+ were used for determining electron temperature and their Stark-broadened profiles were employed to estimate the temporal evolution of electron density.  相似文献   

15.
We have obtained Doppler-free spectra of transitions in the → 2p2(3P) and → multiplets of atomic nitrogen using saturated absorption spectroscopy. These multiplets consist of respectively of seven and eight transitions, and have center of gravity wavelengths of 821 nm and 869 nm. Values for the hyperfine structure coupling constants of all the upper and lower states for these multiplets were obtained for both 14N and 15N. Isotope shifts of three transitions in each multiplet were also measured, and a significant J-dependence to the shifts was observed.  相似文献   

16.
In Li and Luo(2007 Phys. Rev. A 76 032327), the inequality(1/2)T≥ Q was identified as a fundamental postulate for a consistent theory of quantum versus classical correlations for arbitrary measures of total T and quantum Q correlations in bipartite quantum states. Besides, Hayden et al(2006 Commun. Math. Phys. 265 95) have conjectured that, in some conditions within systems endowed with infinite-dimensional Hilbert spaces, quantum correlations may dominate not only half of total correlations but total correlations itself. Here, in a two-mode Gaussian state,quantifying T and Q respectively by the quantum mutual information I~G and the entanglement of formation(EoF) ε_F~G, we verify that ε_(F,R)~G,is always less than(1/2) I_R~G when I~G and ε_F~G are defined via the Rényi-2 entropy. While via the von Neumann entropy, ε_(F,V)~G,may even dominate I_V~G itself,which partly consolidates the Hayden conjecture, and partly, provides strong evidence hinting that the origin of this counterintuitive behavior should intrinsically be related to the von Neumann entropy by which the EoF ε_(F,V)~G,is defined, rather than related to the conceptual definition of the EoF ε_F. The obtained results show that—in the special case of mixed two-mode Gaussian states—quantum entanglement can be faithfully quantified by the Gaussian Rényi-2 EoF ε_(F,R)~G,.  相似文献   

17.
Formation of gold(III) complexes with the synthetic antibiotic norfloxacin (NF) was investigated in aqueous solution at pH 4.0, 7.5 and 10.6, with the ligand in cationic, zwitterionic and anionic forms, respectively. UV-Visible spectroscopy, steady state and time-resolved fluorometry were used to characterize the complexes. Binding sites, association constants and fluorescence lifetimes of the complexes were obtained. Au3+ binding to zwitterionic NF produced a fluorescence decrease and a small red shift. Fluorescence changes as a function of Au3+ concentration were fitted using a one-site binding model and the association constant was obtained, Kbzw = 1.7 ×105  \textM1 K_b^{{zw}} = {1}.{7} \times {1}{0^{{5}}}\;{{\text{M}}^{{1}}} . The association of Au3+ with cationic NF was much weaker, the obtained binding constant being Kbcat = 2.4 ×103  \textM1 K_b^{{cat}} = {2}.{4} \times {1}{0^{{3}}}\;{{\text{M}}^{{1}}} . The Au3+ binding site for these species involves the carboxyl group, in agreement with a much stronger association of the cation with the carboxylate anion than with the neutral acid. Association of Au3+ with nonfluorescent anionic NF presented a clear evidence of two binding sites. The highest affinity site is the unprotonated piperazinyl group with Kbpip \geqslant 5 ×107  \textM - 1 K_b^{{pip}} \geqslant {5} \times {1}{0^{{7}}}\;{{\text{M}}^{{ - {1}}}} , and the low affinity site includes the carboxylate anion. The results point out to important pH dependent differences in complex formation between transition metal ions and fluoroquinolones, leading to different binding sites and association constants that change by several orders of magnitude.  相似文献   

18.
19.
Zanamivir is the known potent anti-influenza agent targeting the key enzyme neuraminidase that cleaves sialic acid from cell receptors allowing release of newly formed virions. Molecular dynamics simulation was carried out to determine the dynamic behavior of Zanamivir upon its binding to flexible loops of neuraminidase and to analyse its interactions in the bioactive state. Neuraminidase exhibits wide range of affinity with structurally similar compounds. CoMFA study was used to determine quantitative structure-activity relationship for 36 carbocyclic Neuraminidase inhibitors (NIs). The CoMFA model was also successfully built using cross-validated r2cv = 0.580{{r}^{2}_{\rm cv} =0.580} and r2pred=0.638{{r}^{2}_{\rm pred}=0.638} .  相似文献   

20.
Evanescent field optical sensors are accurately designed for hydrocarbon monitoring in water. Various kinds of waveguide sensors are optimized by considering a polydimethylsiloxane polymeric overlay as sensor region. The simulation results suggest that the selection of a suitable waveguide cross section can enhance the sensor performance. In particular, the hollow waveguide sensor exhibits very intriguing performance, the absorbance being quite linear with respect to the contaminant concentration. For the toluene pollution the absorbance exhibits a slope STEA = 2.52 ×10-2 ppm-1{S_{\rm TE}^{A} =2.52 \times 10^{-2}\,{\rm ppm}^{-1}} for a waveguide reference length L = 1.18 mm. In order to simultaneously detect different pollutants in water such as toluene, benzene, chlorobenzene and ethilbenzene, an array of four miniaturized hollow waveguide sensors is designed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号