首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we investigate the mode of chiral interactions between the asymmetric Co(II) salen complex, (S,S)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamine-Co(II) ([Co(1)]), and single enantiomers of methylbenzylamine (MBA) using different continuous-wave and pulsed electron paramagnetic resonance techniques combined with density functional theory computations. While [Co(1)] displays a large affinity for binding a single MBA molecule, it has a much weaker affinity for binding a second MBA molecule. Subtle differences are detected in the EPR spectra of the homochiral (S,S-[Co(1)](S-MBA)) and heterochiral (S,S-[Co(1)](R-MBA)) adducts using low [Co(1)] : MBA ratios. Moreover at high concentrations of racemic MBA, a strong preference (80%) is observed for the formation of the bis-ligated heterochiral adduct (S,S-[Co(1)](R-MBA)(2)) compared to the homochiral analogue (20% of S,S-[Co(1)](S-MBA)(2)). Differences in the (14)N hyperfine coupling from the diamine backbone in [Co(1)] were also evidenced by hyperfine sublevel correlation (HYSCORE), revealing magnetically equivalent N nuclei for the homochiral adducts and inequivalent N nuclei for the heterochiral adducts. Using DFT, these slight differences were reproduced, and explained based upon the different modes of alignment of the MBA molecule in the adduct. The current findings therefore reveal the appreciable enantiodiscrimination that occurs during the binding of MBA enantiomers to the chiral Co(II) salen complex.  相似文献   

2.
Single enantiomers of R-/S-methylbenzylamine (MBA) were found to selectively form adducts with the chiral non-C(2) symmetric Cu-salen complex N-(3,5-di-tert-butylsalicylidene)-N'-(salicylidene)-cyclohexane-1,2-diamine copper(II), hereafter labelled [Cu(3)]. The g/A spin Hamiltonian parameters of this Cu(II) complex showed a decrease in symmetry from axial to rhombic upon formation of the [Cu(3)] + MBA adducts. The selectivity in enantiomeric discrimination was found to be only 59 ± 5% in favour of the heterochiral R,R'-[Cu(3)] + S-MBA and S,S'-[Cu(3)] + R-MBA adducts. This was directly evidenced by W-band EPR spectroscopy. The observed low selectivity for enantiomer discrimination is primarily attributed to the loss of the bulky tert-butyl groups from the 3,5 positions of [Cu(3)] compared to the parent N,N'-bis(3,5-di-tert-butylsalicylidene)-cyclohexane-1,2-diamine copper(II) ligand (labelled [Cu(1)]). The structure of the [Cu(3)] complex in the presence and absence of coordinating amine was further investigated by analysis of the ligand hyperfine interactions, as revealed through Q-band CW-ENDOR, X-band Davies ENDOR and HYSCORE. (1)H couplings from the -NH(2) group of the amine, observed by ENDOR and HYSCORE, provided direct evidence of amine coordination.  相似文献   

3.
Electron nuclear double resonance (ENDOR) spectroscopy was used to investigate the weak enantioselective binding between chiral salen complexes [VO(1)] ((R,R)- and (S,S)-vanadyl N,N'-bis(3,5-di-tert-butylsalcylidene)-1,2-cyclohexanediamine) and chiral epoxides (e.g., (R)-/(S)-propylene epoxide, 5) in frozen (10 K) solution. Differences in epoxide binding by enatiomers of [VO(1)] was evidenced by changes to the 1H epoxide derived peaks in the ENDOR spectra, such that (R,R)-[VO(1)] + (R)-5 and (R,R)-[VO(1)] + (S)-5 yield noticeably different spectra. These changes were assigned to the small structural differences between the diastereomeric metal-epoxide adducts. Simulation of the spectra revealed differences in the VO...1Hepoxide distances for the diastereomeric pairs, which was confirmed by a complementary set of density functional theory (DFT) calculations. While the epoxide molecule is very weakly coordinated, ENDOR measurements of the racemic complex in racemic epoxide nevertheless indicated the preferential coordination of the (R)-5 to (R,R)-[VO(1)] (likewise (S)-(5) to (S,S)-[VO(1)]), which is favored over the binding of (S)-5 epoxide to (R,R)-[VO(1)] (and likewise (R)-5 epoxide to (S,S)-[VO(1)]). This demonstrates the unique power of the ENDOR technique to resolve weak chiral interactions for which EPR spectroscopy alone lacks sufficient resolution.  相似文献   

4.
The novel tripodal ligand N-(bis(2-pyridyl)methyl)-2-pyridinecarboxamide (Py3AH) affords monomeric and dimeric copper(II) complexes with coordinated carboxamido nitrogens. Although many chloro-bridged dimeric copper(II) complexes are known, [Cu(Py3A)(Cl)] (1) remains monomeric and planar with a pendant pyridine and does not form either a chloro-bridged dimer or the ligand-shared dimeric complex [Cu(Py3A)(Cl)]2 (4) in solvents such as CH3CN. When 1 is dissolved in alcohols, square pyramidal alcohol adducts [Cu(Py3A)(Cl)(CH3OH)] (2) and [Cu(Py3A)(Cl)(C2H5OH)] (3) are readily formed. In 2 and 3, the ROH molecules are bound at axial site of copper(II) and the weak axial binding of the ROH molecule is strengthened by intramolecular hydrogen bonding between ROH and the pendant pyridine nitrogen. Two ligand-shared dimeric species [Cu(Py3A)(Cl)]2 (4) and [Cu(Py3A)]2(ClO4)2 (5) have also been synthesized in which the pendant pyridine of one [Cu(Py3A)] unit completes the coordination sphere of the other [Cu(Py3A)] neighbor. These ligand-shared dimers are obtained in aqueous solutions or in complete absence of chloride in the reaction mixtures.  相似文献   

5.
The complex [Cu2(L-66)]2+ (L-66 = a,a'-bis?bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino?-m-xylene) undergoes fully reversible oxygenation at low temperature in acetone. The optical [lambda(max) = 362 (epsilon 15000), 455 (epsilon 2000), and 550 nm (epsilon 900M(-1)cm(-1))] and resonance Raman features (760 cm(-1), shifted to 719cm(-1)(-1) with 18O2) of the dioxygen adduct [Cu2(L-66)(O2)]2+ indicate that it is a mu-eta2:eta2-peroxodicopper(II) complex. The kinetics of dioxygen binding, studied at - 78 degrees C, gave the rate constant k1 = 1.1M(-1) 5(-1) for adduct formation, and k(-1) =7.8 x 10(-5)s(-1), for dioxygen release from the Cu2O2 complex. From these values, the O2 binding constant K= 1.4 x 10(4)M(-1) at -78 degrees C could be determined. The [Cu2(L-66)(O2)]2+ complex performs the regiospecific ortho-hydroxylation of 4-carbomethoxyphenolate to the corresponding catecholate and the oxidation of 3,5-di-tert-butylcatechol to the quinone at -60 degrees C. Therefore, [Cu2(L-66)]2+ is the first synthetic complex to form a stable dioxygen adduct and exhibit true tyrosinase-like activity on exogenous phenolic compounds.  相似文献   

6.
The variation of ligand para substituents on pyridyl donor groups of tridentate amine copper(I) complexes was carried out in order to probe electronic effects on the equilibrium between mu-eta2:eta2-(side-on)-peroxo [Cu(II)2(O2(2-))]2+ and bis(mu-oxo) [Cu(III)2(O(2-))2] species formed upon reaction with O2. [Cu(I)(R-PYAN)(MeCN)n]B(C6F5)4 (R-PYAN = N-[2-(4-R-pyridin-2-yl)-ethyl]-N,N',N'-trimethyl-propane-1,3-diamine, R = NMe2, OMe, H, and Cl) (1R) vary over a narrow range in their Cu(II)/Cu(I) redox potentials (E(1/2) vs Fe(cp)2(+/0) = -0.40 V for 1(NMe2), -0.38 V for 1(OMe), -0.33 V for 1H, and -0.32 V for 1Cl) and in C-O stretching frequencies of their carbonyl adducts, 1R-CO: nu(C-O) = 2080, 2086, 2088, and 2090 cm(-1) for R = NMe2, OMe, H, and Cl, respectively. However, within this range of electronic properties for 1R, dioxygen reactivity is significantly affected. The reaction of 1Cl or 1H with O2 at -78 degrees C in CH2Cl2 gives UV-vis and resonance Raman spectra indicative of a mu-eta2:eta2-(side-on)-peroxo dicopper(II) adduct (2R). Compound 1(OMe) reacts with O2, yielding equilibrium mixtures of side-on peroxo (2(OMe)) and bis(mu-oxo) (3(OMe)) species. Oxygenation of 1(NMe2) leads to the sole generation of the bis(mu-oxo) dicopper(III) complex (3(NMe2)). A solvent effect was also observed; in acetone or THF, increased ratios of bis(mu-oxo) relative to side-on peroxo complex are observed. Thus, the equilibrium between a dicopper side-on peroxo and bis(mu-oxo) species can be tuned by ligand design-specifically, more electron donating ligands favor the formation of the latter isomer, and the peroxo/bis(mu-oxo) equilibrium can be shifted from one extreme to the other within the same ligand system. Observations concerning the reactivity of the dioxygen adducts 2H and 3(NMe2) toward external substrates are also presented.  相似文献   

7.
A series of Cu(II) and Cu(I)/Cu(II) complexes containing the cis-N(amine)(2)S(thiolate)(2) copper complex rac-2 has been synthesized to provide a basis for understanding the charge-transfer spectra of mixed-valence thiolate-bridged Cu(I)/Cu(II) complexes. In combination with Cu(Me(2)-13-N(4)ane), rac-2 yields a monobridged dinuclear homovalent adduct, rac-5, while reaction with CuCl yields the mixed-valance pentanuclear complex rac-6. In the presence of Cu(II)(acac)(2), chiral R,R-1 reacts to form a mixed-valence pentanuclear cation R,R-7. rac-6 exhibits a relatively short Cu(I). Cu(II) contact [2.8231(9) A] and associated structural features that suggest the presence of a weak Cu(I).Cu(II) interaction in a valence-trapped system. Additional structural features in rac-6 and R,R-7 include singly and doubly bridging thiolates, three- and four-coordinated Cu(I) ions, and varying Cu(I) ligand sets. These features extend the types and complexities of electronic absorptions significantly. Spectra of rac-6 and R,R-7 exhibit multiple overlapping absorptions over the entire visible and ultraviolet spectral regions studied, consonant with these observations. Trends resulting from variations in structure type and oxidation state permit a first approach toward developing a detailed assignment of the individual ligand Rydberg, LF, LMCT, MLCT, and possible MMCT absorptions in these complexes.  相似文献   

8.
A series of dinuclear copper(II) complexes has been synthesized with the aim to investigate their applicability as potential structure and function models for the active site of catechol oxidase enzyme. They have been characterized by routine physicochemical techniques as well as by X-ray single-crystal structure analysis: [Cu 2(H 2L2 (2))(OH)(H 2O)(NO 3)](NO 3) 3.2H 2O ( 1), [Cu(HL1 (4))(H 2O)(NO 3)] 2(NO 3) 2.2H 2O ( 2), [Cu(L1 (1))(H 2O)(NO 3)] 2 ( 3), [Cu 2(L2 (3))(OH)(H 2O) 2](NO 3) 2, ( 4) and [Cu 2(L2 (1))(N 3) 3] ( 5) [L1 = 2-formyl-4-methyl-6R-iminomethyl-phenolato and L2 = 2,6-bis(R-iminomethyl)-4-methyl-phenolato; for L1 (1) and L2 (1), R = N-propylmorpholine; for L2 (2), R = N-ethylpiperazine; for L2 (3), R = N-ethylpyrrolidine, and for L1 (4), R = N-ethylmorpholine]. Dinuclear 1 and 4 possess two "end-off" compartmental ligands with exogenous mu-hydroxido and endogenous mu-phenoxido groups leading to intermetallic distances of 2.9794(15) and 2.9435(9) A, respectively; 2 and 3 are formed by two tridentate compartmental ligands where the copper centers are connected by endogenous phenoxido bridges with Cu-Cu separations of 3.0213(13) and 3.0152(15) A, respectively; 5 is built by an end-off compartmental ligand having exogenous mu-azido and endogenous mu-phenoxido groups with a Cu-Cu distance of 3.133(2) A (mean of two independent molecules). The catecholase activity of all of the complexes has been investigated in acetonitrile and methanol medium by UV-vis spectrophotometric study using 3,5-di- tert-butylcatechol (3,5-DTBC) and tetrachlorocatechol (TCC) as substrates. In acetonitrile medium, the conversion of 3,5-DTBC to 3,5-di- tert-butylbenzoquinone (3,5-DTBQ) catalyzed by 1- 5 is observed to proceed via the formation of two enzyme-substrate adducts, ES1 and ES2, detected spectroscopically for the first time. In methanol medium no such enzyme-substrate adduct has been detected, and the 3,5-DTBC to 3,5-DTBQ conversion is observed to be catalyzed by 1- 5 very efficiently. The substrate TCC forms an adduct with 2- 5 without performing further oxidation to TCQ due to the high reduction potential of TCC (in comparison with 3,5-DTBC). But most interestingly, 1 is observed to be effective even in TCC oxidation, a process never reported earlier. Kinetic experiments have been performed to determine initial rate of reactions (3,5-DTBC as substrate, in methanol medium) and the activity sequence is 1 > 5 > 2 = 4 > 3. A treatment on the basis of Michaelis-Menten model has been applied for kinetic study, suggesting that all five complexes exhibit very high turnover number, especially 1, which exhibits turnover number or K cat of 3.24 x 10 (4) (h (-1)), which is approximately 3.5 times higher than the most efficient catalyst reported to date for catecholase activity in methanol medium.  相似文献   

9.
Radical adducts of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) with hydroxyl, methanol-derived, and ethanol-derived radicals were detected by a combination of liquid chromatography with either electron paramagnetic resonance or thermospray mass spectrometry (LC/EPR or LC/TSP-MS) in the Fenton system (with methanol or ethanol). One radical adduct was observed in the reaction of DMPO with the hydroxyl radical or the methanol-derived radical, while two adducts were detected in the reaction of DMPO with ethanol-derived radicals. The LC/TSP-MS spectra showed quasi-molecular ions [M + H]+ at m/z 146 and m/z 160 for the methanol-derived and ethanol-derived radical adducts, respectively, and an apparent molecular ion M+ at m/z 130 for the hydroxyl radical adduct. Use of methyl-D3 alcohol (CD3OH) and ethyl-D5 alcohol (CD3CD2OH) indicated that carbon-centered radicals are formed. Experiments with partially deuterated ethanol (CD3CH2OH and CH3CD2OH) indicated that the two adducts observed in the reaction of DMPO with ethanol-derived radicals correspond to the two diastereomeric adducts of DMPO with the alpha-hydroxyethyl free radical.  相似文献   

10.
Complex formation of the two tetraamine ligands (2S,3S)-1,2,3,4-tetraaminobutane (threo-tetraaminobutane, ttab) and (2R,3S)-1,2,3,4-tetraaminobutane (erythro-tetraaminobutane, etab) with Co(III), Ni(II), Cu(II), and Pd(II) was investigated in aqueous solution and in the solid state. For Ni(II) and Cu(II), the pH-dependent formation of a variety of species [Mn(II)xLyHz](2x+z)+ was established by potentiometric titrations and UV/Vis spectroscopy. In sufficiently acidic solutions the divalent cations formed a mononuclear complex with the doubly protonated ligand of composition [M(H2L)]4+. An example of such a complex was characterized in the crystal structure of [Pd(H2ttab)Cl2]Cl2.H2O. If the metal cation was present in excess, increase of pH resulted in the formation of dinuclear complexes [M2L]4+. Such a species was found in the crystal structure of [Cu2(ttab)Br4].H2O. Excess ligand, on the other hand, lead to the formation of a series of mononuclear bis-complexes [Mq(HxL)(HyL)](q+x+y)+. The crystal structure of [Co(Hetab)2][ZnCl4]2Cl. H2O with the inert, trivalent Co(III) center served as a model to illustrate the structural features of this class of complexes. By using an approximately equimolar ratio of the ligand and the metal cation, a variety of polymeric aggregates both in dilute aqueous solution and in the solid state were observed. The crystal structure of Cu2(ttab)3Br4, which exhibits a two-dimensional, infinite network, and that of [Ni8(ttab)12]Br16.17.5H2O, which contains discrete chiral [Ni8(ttab)12]16+ cubes with approximate T symmetry, are representative examples of such polymers. The energy of different diastereomeric forms of such complexes with the two tetraamine ligands were analyzed by means of molecular mechanics calculations, and the implications of these calculations for the different structures are discussed.  相似文献   

11.
本文用~1H-NMR和~(31)P-NMR谱研究了[Cu(dien)Cl]~+与5'-AMP、5'-GMP和5'-CMP在pD=6.00条件下的共价键合作用.氢核磁共振谱研究表明[Cu(dien)]~(2+)与5'-AMP可以在N-7和N-1位上键合,但N-7是最有利的键合位置.配离子与5'-GMP、5'-CMP、分别键合在N-7和N-3位置上.~(31)P核磁共振谱研究结果则表明[Cu(dien)]~(2+)还可以与单核苷酸上的磷酸酯根键合.并根据显著加宽质子峰及~(31)P峰的最低[Cu(dien)Cl]~+浓度,比较了[Cu(dien)]~(2+)对三种核苷酸的碱基与磷酸酯根的亲力.  相似文献   

12.
The Hg2+aq- and HgCl+aq-assisted aquations of [PtCl4]2- (1), [PtCl3(H2O)]- (2), cis-[PtCl2(H2O)2] (3), trans-[PtCl2(H2O)2] (4), [PtCl(H2O)3]+ (5), [PtCl3Me2SO]- (6), trans-[PtCl2(H2O)Me2SO] (7), cis-[PtCl(H2O)2Me2SO]+ (8), trans-[PtCl(H2O)2M32SO]+ (9), trans-[PtCl2(NH3)2] (10), and cis-[PtCl2(NH3)2] (11) have been studied at 25.0 degrees C in a 1.00 M HClO4 medium buffered with chloride, using stopped-flow and conventional spectrophotometry. Saturation kinetics and instantaneous, large UV/vis spectral changes on mixing solutions of platinum complex and mercury are ascribed to formation of transient adducts between Hg2+ and several of the platinum complexes. Depending on the limiting rate constants, these adducts are observed for a few milliseconds to a few minutes. Thermodynamic and kinetics data together with the UV/vis spectral changes and DFT calculations indicate that their structures are characterized by axial coordination of Hg to Pt with remarkably short metal-metal bonds. Stability constants for the Hg2+ adducts with complexes 1-6, 10, and 11 are (2.1 +/- 0.4) x 10(4), (8 +/- 1) x 10(2), 94 +/- 6, 13 +/- 2, 5 +/- 2, 60 +/- 6, 387 +/- 2, and 190 +/- 3 M-1, respectively, whereas adduct formation with the sulfoxide complexes 7-9 is too weak to be observed. For analogous platinum(II) complexes, the stabilities of the Pt-Hg adducts increase in the order sulfoxide < aqua < ammine complex, reflecting a sensitivity to the pi-acid strength of the Pt ligands. Rate constants for chloride transfer from HgCl+ and HgCl2 to complexes 1-11 have been determined. Second-order rate constants for activation by Hg2+ are practically the same as those for activation by HgCl+ for each of the platinum complexes studied, yet resolved contributions for Hg2+ and HgCl+ reveal that the latter does not form dinuclear adducts of any significant stability. The overall experimental evidence is consistent with a mechanism in which the accumulated Pt(II)-Hg2+ adducts are not reactive intermediates along the reaction coordinate. The aquation process occurs via weaker Pt-Cl-Hg or Pt-Cl-HgCl bridged complexes.  相似文献   

13.
Copper ions have been proposed to intervene in deleterious processes linked to the development of Alzheimer's disease (AD). As a direct consequence, delineating how Cu(II) can be bound to amyloid-β (Aβ) peptide, the amyloidogenic peptide encountered in AD, is of paramount importance. Two different forms of [Cu(II)(Aβ)] complexes are present near physiological pH, usually noted components I and II, the nature of which is still widely debated in the literature, especially for II. In the present report, the phenomenological pH-dependent study of Cu(II) coordination to Aβ and to ten mutants by EPR, CD, and NMR techniques is described. Although only indirect insights can be obtained from the study of Cu(II) binding to mutated peptides, they reveal very useful for better defining Cu(II) coordination sites in the native Aβ peptide. Four components were identified between pH 6 and 12, namely, components I, II, III and IV, in which the predominant Cu(II) equatorial sites are {-NH(2), CO (Asp1-Ala2), N(im) (His6), N(im) (His13 or His14)}, {-NH(2), N(-) (Asp1-Ala2), CO (Ala2-Glu3), N(im)}, {-NH(2), N(-) (Asp1-Ala2), N(-) (Ala2-Glu3), N(im)} and {-NH(2), N(-) (Asp1-Ala2), N(-) (Ala2-Glu3), N(-) (Glu3-Phe4)}, respectively, in line with classical pH-induced deprotonation of the peptide backbone encountered in Cu(II) peptidic complexes formation. The structure proposed for component II is discussed with respect to another coordination model reported in the literature, that is, {CO (Ala2-Glu3), 3 N(im)}. Cu(II) binding to the H6R-Aβ and D7N-Aβ peptides, where the familial H6R and D7N mutations have been linked to early onset of AD, has also been investigated. In case of the H6R mutation, some different structural features (compared to those encountered in the native [Cu(II)(Aβ)] species) have been evidenced and are anticipated to be important for the aggregating properties of the H6R-Aβ peptide in presence of Cu(II).  相似文献   

14.
The N7/O6 equatorial binding interactions of the antitumor active complex Rh(2)(OAc)(4)(H(2)O)(2) (OAc(-) = CH(3)CO(2)(-)) with the DNA fragment d(GpG) have been unambiguously determined by NMR spectroscopy. Previous X-ray crystallographic determinations of the head-to-head (HH) and head-to-tail (HT) adducts of dirhodium tetraacetate with 9-ethylguanine (9-EtGH) revealed unprecedented bridging N7/O6 guanine nucleobases that span the Rh-Rh bond. The absence of N7 protonation at low pH and the notable increase in the acidity of N1-H (pK(a) approximately 5.7 as compared to 8.5 for N7 only bound platinum adducts), suggested by the pH dependence titrations of the purine H8 (1)H NMR resonances for Rh(2)(OAc)(2)(9-EtG)(2) and Rh(2)(OAc)(2-)[d(GpG)],are consistent with bidentate N7/O6 binding of the guanine nucleobases. The pK(a) values estimated for N1-H (de)protonation, from the pH dependence studies of the C6 and C2 (13)C NMR resonances for the Rh(2)(OAc)(2)(9-EtG)(2) isomers, concur with those derived from the H8 (1)H NMR resonance titrations. Comparison of the (13)C NMR resonances of C6 and C2 for the dirhodium adducts Rh(2)(OAc)(2)(9-EtG)(2) and Rh(2)(OAc)(2)[d(GpG)] with the corresponding resonances of the unbound ligands [at pH 7.0 for 9-EtGH and pH 8.0 for d(GpG)], shows substantial downfield shifts of Deltadelta approximately 11.0 and 6.0 ppm for C6 and C2, respectively; the latter shifts reflect the effect of O6 binding to the dirhodium centers and the ensuing enhancement in the acidity of N1-H. Intense H8/H8 ROE cross-peaks in the 2D ROESY NMR spectrum of Rh(2)(OAc)(2)[d(GpG)] indicate head-to-head arrangement of the guanine bases. The Rh(2)(OAc)(2)[d(GpG)] adduct exhibits two major right-handed conformers, HH1 R and HH2 R, with HH1 R being three times more abundant than the unusual HH2 R. Complete characterization of both adducts revealed repuckering of the 5'-G sugar rings to C3'-endo (N-type), retention of C2'-endo (S-type) conformation for the 3'-G sugar rings, and anti orientation with respect to the glycosyl bonds. The structural features obtained for Rh(2)(OAc)(2))[d(GpG)] by means of NMR spectroscopy are very similar to those for cis-[Pt(NH(3))(2))[d(GpG)]] and corroborate molecular modeling studies.  相似文献   

15.
Insight into the N7/O6 equatorial binding interactions of the antitumor active complex Rh(2)(OAc)(4)(H(2)O)(2) (OAc(-) = CH(3)CO(2)(-)) with the nucleotide 5'-GMP and the DNA fragment d(pGpG) has been obtained by one- (1D) and two-dimensional (2D) NMR spectroscopy. The lack of N7 protonation at low pH values and the significant increase in the acidity of N1-H (pK(a) approximately 5.6 as compared to 8.5 for N7 only bound platinum adducts), indicated by the pH dependence study of the H8 (1)H NMR resonance for the HT (head-to-tail) isomer of Rh(2)(OAc)(2)(5'-GMP)(2), are consistent with bidentate N7/O6 binding of the guanine. The H8 (1)H NMR resonance of the HH (head-to-head) Rh(2)(OAc)(2)(5'-GMP)(2) isomer, as well as the 5'-G and 3'-G H8 resonances of the Rh(2)(OAc)(2) [d(pGpG)] adduct exhibit pH-independent titration curves, attributable to the added effect of the 5'-phosphate group deprotonation at a pH value similar to that of the N1 site. The enhancement in the acidity of N1-H, with respect to N7 only bound metal adducts, afforded by the O6 binding of the bases to the rhodium centers, has been corroborated by monitoring the pH dependence of the purine C6 and C2 (13)C NMR resonances for Rh(2)(OAc)(2)(5'-GMP)(2) and Rh(2)(OAc)(2) [d(pGpG)]. The latter studies resulted in pK(a) values in good agreement with those derived from the pH-dependent (1)H NMR titrations of the H8 resonances. Comparison of the (13)C NMR resonances of C6 and C2 for the dirhodium adducts Rh(2)(OAc)(2)(5'-GMP)(2) and Rh(2)(OAc)(2) [d(pGpG)] with the corresponding resonances of the unbound ligands at pH 8.0, showed substantial downfield shifts of Deltadelta approximately 11.0 and 6.0 ppm, respectively. The HH arrangement of the bases in the Rh(2)(OAc)(2) [d(pGpG)] adduct is evidenced by intense H8/H8 ROE cross-peaks in the 2D ROESY NMR spectrum. The presence of the terminal 5'-phosphate group in d(pGpG) results in stabilization of one left-handed Rh(2)(OAc)(2) [d(pGpG)] HH1 L conformer, due to the steric effect of the 5'-group, favoring left canting in cisplatin-DNA adducts. Complete characterization of the Rh(2)(OAc)(2[d(pGpG)] adduct revealed notable structural features that resemble those of cis-[Pt(NH(3))(2) [d(pGpG)]]; the latter involve repuckering of the 5'-G sugar ring to C3'-endo (N-type) conformation, retention of C2'-endo (S-type) 3'-G sugar ring conformation, and anti orientation with respect to the glycosyl bonds. The superposition of the low energy Rh(2)(OAc)(2) [d(pGpG)] conformers, generated by simulated annealing calculations, with the crystal structure of cis-[Pt(NH(3))(2) [d(pGpG)]], reveals remarkable similarities between the adducts; not only are the bases almost completely destacked upon coordination to the metal in both cases, but they are favorably poised to accommodate the bidentate N7/O6 binding to the dirhodium unit. Unexpectedly, the two metal-metal bonded rhodium centers are capable of engaging in cis binding to GG intrastrand sites by establishing N7/O6 bridges that span the Rh-Rh bond.  相似文献   

16.
A new series of Fe(II) complexes, FeCl2[N(R)=C(Me)C(Me)=N(R)], containing diimine ligands with hemilabile sidearms R (R = CH2(CH2)2NMe2, 1, CH2(CH2)2OMe, 2, CH2(CH2)2SMe), 3) were synthesized. The crystal structure of 1 showed 6-coordination where both amine arms were attached, whereas 2 was a 5-coordinate 16e species with one methoxy arm dangling free. Extensive attempts were made to bind CO to these species to synthesize precursors for dihydrogen complexes but were unsuccessful. Reaction of 1 with 1 or 2 equiv of AgOTf under CO atmosphere resulted in isolation of only a 6-coordinate bis(triflate)-containing product [Fe[N(R)=C(Me)C(Me)=N(R)](OTf)2] (R = CH2(CH2)2NMe2), 5. Reaction of 5-coordinate 2 with AgSbF6 under CO did not give a CO adduct but afforded instead a dicationic dinuclear complex [Fe[N(R)=C(Me)C(Me)=N(R)](mu-Cl)]2[SbF6]2 (R = CH2(CH2)2OMe), 4, containing a weakly bound SbF6. Thus coordination of hard-donor anions to iron was favored over CO binding. The unexpected rejection of binding of CO is rationalized by the iron being in a high-spin state in this system and energetically incapable of spin crossover to a low-spin state. Theoretical calculations on CO interaction with Fe(II) centers in spin states S = 0, 1, and 2 for both the 16e complexes and their CO adducts aid further understanding of this problem. They show that interaction of CO with a high-spin 5-coordinate Fe model diimine complex is essentially thermoneutral but is exergonic by about 48 kcal/mol to a comparable but low-spin diphosphine fragment. Spin crossover is thus disfavored thermodynamically rather than kinetically (e.g. a "spin block" effect); i.e., the ligand field strengths of the primarily N-donor groups are apparently insufficient to give a low-spin CO adduct.  相似文献   

17.
A density functional theory method [B3LYP*/6-311++G(d,p)] was used to study mixed-ligand adducts of tetracoordinate cobalt(II) complexes and 1-(pyridin-2-yl)methanimines. Stability of the adducts with respect to dissociation into the initial components and the possibility of intramolecular electron transfer were explored. The calculated energy characteristics of the adduct of Co(II) bisacetylacetonate with a redox-active ligand functionalized by cyano groups suggest the possibility of valence tautomerism in this compound.  相似文献   

18.
trans-4-Hydroxynonenal (HNE) is a peroxidation product of omega-6 polyunsaturated fatty acids. The Michael addition of deoxyguanosine to HNE yields four diastereomeric exocyclic 1,N(2)-dG adducts. The corresponding acrolein- and crotonaldehyde-derived exocyclic 1,N(2)-dG adducts undergo ring-opening to N(2)-dG aldehydes, placing the aldehyde functionalities into the minor groove of DNA. The acrolein- and the 6R-crotonaldehyde-derived exocyclic 1,N(2)-dG adducts form interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence context. Only the HNE-derived exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry forms interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence context. Moreover, as compared to the exocyclic 1,N(2)-dG adducts of acrolein and crotonaldehyde, the cross-linking reaction is slow (Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc. 2003, 125, 5687-5700). Accordingly, the chemistry of the HNE-derived exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry has been compared with that of the (6R,8S,11R) adduct, when incorporated into 5'-d(GCTAGCXAGTCC)-3'.5'-d(GGACTCGCTAGC)-3', containing the 5'-CpG-3' sequence (X = HNE-dG). When placed complementary to dC in this duplex, both adducts open to the corresponding N(2)-dG aldehydic rearrangement products, suggesting that the formation of the interstrand cross-link by the exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry, and the lack of cross-link formation by the exocyclic 1,N(2)-dG adduct of (6R,8S,11R) stereochemistry, is not attributable to inability to undergo ring-opening to the aldehydes in duplex DNA. Instead, these aldehydic rearrangement products exist in equilibrium with stereoisomeric cyclic hemiacetals. The latter are the predominant species present at equilibrium. The trans configuration of the HNE H6 and H8 protons is preferred. The presence of these cyclic hemiacetals in duplex DNA is significant as they mask the aldehyde species necessary for interstrand cross-link formation.  相似文献   

19.
2-Benzoylpyridine thiosemicarbazone {R(1)R(2)C(2)=N(2)·N(3)H-C(1)(=S)-N(4)H(2), R(1) = py-N(1), R(2) = Ph; Hbpytsc} with copper(I) iodide in acetonitrile-dichloromethane mixture has formed stable Cu(II)-I bonds in a dark green Cu(II) iodo-bridged dimer, [Cu(2)(II)(μ-I)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 1. Copper(I) bromide also formed similar Cu(II)-Br bonds in a dark green Cu(II) bromo-bridged dimer, [Cu(2)(II)(μ-Br)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 3. The formation of dimers 1 and 3 appears to be due to a proton coupled electron transfer (PCET) process wherein copper(I) loses an electron to form copper(II), and this is accompanied by a loss of -N(3)H proton of Hbpytsc ligand resulting in the formation of anionic bpytsc(-). When copper(I) iodide was reacted with triphenylphosphine (PPh(3)) in acetonitrile followed by the addition of 2-benzoylpyridine thiosemicarbazone in dichloromethane (Cu?:?PPh(3)?:?Hbpytsc in the molar ratio 1:1:1), both Cu(II) dimer 1 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)I(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 2 were formed. Copper(I) bromide with PPh(3) and Hbpytsc also formed Cu(II) dimer 3 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)Br(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 4. While complexes 2 and 4 exist as sulfur-bridged Cu(I) dimers, 1 and 3 are halogen-bridged. The central Cu(2)S(2) cores of 2 and 4 as well as Cu(2)X(2) of 1 (X = I) and 3 (X = Br) are parallelograms. One set of Cu(II)-I and Cu(II)-Br bonds are short, while the second set is very long {1, Cu-I, 2.565(1), 3.313(1) ?; 3, Cu-Br, 2.391(1), 3.111(1) ?}. The Cu···Cu separations are long in all four complexes {1, 4.126(1); 2, 3.857(1); 3, 3.227(1); 4, 3.285(1) ?}, more than twice the van der Waals radius of a Cu atom, 2.80 ?. The pyridyl group appears to be necessary for stabilizing the Cu(II)-I bond, as this group can accept π-electrons from the metal.  相似文献   

20.
A mononuclear Cu(II) complex, [Cu(FA)2(NO3)2], in which FA is ferulic acid ((E)-3-(4-hydroxy-3-methoxy-phenyl)prop-2-enoic acid), was synthesized and characterized by spectroscopic methods. The main structures of the ligand and its complexes with Cu2+ were optimized by QM calculations. The calculations on the structures of the [Cu(FA)2(NO3)2] complexes forms and the intercalating with DNA profile were undertaken by UHF/PM6 and MMFF94 methods, respectively. In vitro studies (UV-vis spectroscopy, emission titration, circular dichroism techniques, and viscometry) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) showed that the complex interacts with calf-thymus DNA (ct-DNA) via an intercalative binding mode. The thermodynamic parameters, enthalpy change (ΔH), and entropy change (ΔS) showed that the acting forces between Cu(II) complex and ct-DNA mainly included van der Waals interactions and hydrogen bonds. Methylene blue (MB) displacement studies revealed that Cu(II) complex can substitute MB probe in the MB-DNA complex which was indicative of intercalative binding. The theoretical data confirm the experimental results with respect to the mechanism of binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号