首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lymphocytes from healthy donors and leukemic cells of patients with acute B-lymphoblastic leukemia (BALL-1) and acute myeloid leukemia were exposed to nanoparticles bearing magnetic (Zn-67) and nonmagnetic (total isotope pool) nuclei of zinc. The values of the corresponding magnetic isotope effects determined as the ratio of LD50 magnitudes of preparations with magnetic and nonmagnetic zinc isotopes were 0, 3.5, and 1.5. Morphological studies using confocal and fluorescence microscopy showed apoptotic death of cells with the preparations; as well, there was an increase in the cell aggregation and better aggregation of nanoparticles in the case of 67Zn-NP, which resulted in a decrease of cytotoxicity. However the magnetic isotope effect was observed even in the case of aggregation.  相似文献   

2.
The effect of nanoparticles bearing magnetic and nonmagnetic zinc nuclei on lymphocytes from healthy donors and leukemic cells of patients (15–20 years old) with acute B-lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML) was considered. The studies by confocal and fluorescence microscopy showed an apoptotic effect of nanoparticles bearing zinc ions. An increase in the aggregation of the nanoparticles and cell self-aggregation, resulting in a decrease in cytotoxicity, were observed in the case of the magnetic isotope. In spite of this, cell apoptosis under the action of even aggregated nanoparticles bearing magnetic 67Zn was significantly higher than the apoptosis with lymphocytes of healthy donors and with nanoparticles bearing zinc of the total isotope composition.  相似文献   

3.

Magnetic isotope effects have been recently discovered in living nature. They were observed for the first time in experiments on cells enriched with various magnesium isotopes, magnetic 25Mg or non-magnetic ones. A catalytic effect of the magnetic isotope of magnesium was discovered in experiments with myosin, the most important biomolecular motor utilizing the energy of ATP to perform mechanical work. The rate of ATP hydrolysis with the magnetic 25Mg isotope is 2.0–2.5 times higher than that obtained with nonmagnetic 24Mg or 26Mg. A similar effect of the nuclear spin catalysis was experimentally observed for zinc isotopes. The rate of ATP hydrolysis in the case of magnetic 67Zn increased by 40–50% as compared to that observed experimentally for nonmagnetic isotopes (64Zn or 68Zn). Catalytic effects of the magnetic isotope of magnesium were also experimentally found for H+-ATPase isolated from yeast mitochondria and ATPase of the plasma membrane of the myometrium. The magnetic isotope effect indicates unambiguously that the chemomechanical processes involve a limiting step catalyzed by biomolecular motors, which depends on the electronic spin state, and that this step is accelerated in the presence of nuclear spin of the magnetic isotope.

  相似文献   

4.
This study evaluates the potential use of stable zinc isotopes in toxicity studies measuring zinc uptake by the gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). The use of stable isotopes in such studies has several advantages over the use of radioisotopes, including cost, ease of handling, elimination of permit requirements, and waste disposal. A pilot study using brown trout was performed to evaluate sample preparation methods and the ability of a quadrupole inductively coupled plasma mass spectrometer (ICP-MS) system to successfully measure changes in the 67Zn/66Zn ratios for planned exposure levels and duration. After completion of the pilot study, a full-scale zinc exposure study using rainbow trout was performed. The results of these studies indicate that there are several factors that affect the precision of the measured 67Zn/66Zn ratios in the sample digests, including variations in sample size, endogenous zinc levels, and zinc uptake rates by individual fish. However, since these factors were incorporated in the calculation of the total zinc accumulated by the gills during the exposures, the data obtained were adequate for their intended use in calculating zinc binding and evaluating the influences of differences in water quality parameters.  相似文献   

5.
Experiments with cells enriched in stable magnesium isotopes, magnetic 25Mg or nonmagnetic 24Mg and 26Mg, are carried out. It is revealed that adaptation of bacteria E. coli to the growth media enriched in magnetic 25Mg proceeds faster as compared to the growth media enriched in nonmagnetic magnesium isotopes. In experiments with another commonly accepted cell model, S. cerevisiae yeast, it is revealed that the rate constant of postradiation recovery of the cells after UV irradiation is two times higher for cells enriched in 25Mg than for cells enriched in the nonmagnetic isotope. In collaboration with Ukrainian colleagues from the Palladin Institute of Biochemistry, the effects of different isotopes of magnesium on ATPase activity of myosin isolated from myometrium are studied. It is found that the rate of the enzymatic hydrolysis of ATP for 25Mg is 2.0–2.5 times higher as compared to nonmagnetic isotopes 24Mg and 26Mg. Some possible mechanisms of magnetic isotope effects (nuclear spin catalysis) in biological objects are discussed.  相似文献   

6.
Fe3O4/ZIF‐8 nanoparticles were synthesized through a room‐temperature reaction between 2‐methylimidazolate and zinc nitrate in the presence of Fe3O4 nanocrystals. The particle size, surface charge, and magnetic loading can be conveniently controlled by the dosage of Zn(NO3)2 and Fe3O4 nanocrystals. The as‐prepared particles show both good thermal stability (stable to 550 °C) and large surface area (1174 m2g?1). The nanoparticles also have a superparamagnetic response, so that they can strongly respond to an external field during magnetic separation and disperse back into the solution after withdrawal of the magnetic field. For the Knoevenagel reaction, which is catalyzed by alkaline active sites on external surface of catalyst, small Fe3O4/ZIF‐8 nanoparticles show a higher catalytic activity. At the same time, the nanocatalysts can be continuously used in multiple catalytic reactions through magnetic separation, activation, and redispersion with little loss of activity.  相似文献   

7.
《Electroanalysis》2004,16(23):1925-1930
A simple and practical method for electrochemical DNA hybridization assay has been developed to take advantage of magnetic nanoparticles for ssDNA immobilization and zinc sulfide nanoparticle as oligonucleotide label. Magnetic nanoparticles were prepared by coprecipitation of Fe2+ and Fe3+ with NH4OH, and then amino silane was coated onto the surface of magnetite nanoparticles. The magnetic nanoparticles have the advantages of easy preparation, easy surface modification and low cost. The target ssDNA with the phosphate group at the 5′ end was then covalently immobilized to the amino group of magnetite nanoparticles by forming a phosphoramidate bond in the presence of 1‐ethyl‐3‐(3‐dimeth‐ylaminopropyl)carbodiimide (EDAC). The zinc sulfide (ZnS) nanoparticle‐labeled oligonucleotides probe was used to identify the target ssDNA immobilized on the magnetic nanoparticles based on a specific hybridization reaction. The hybridization events were assessed by the dissolution of the zinc sulfide nanoparticles anchored on the hybrids and the indirect determination of the dissolved zinc ions by anodic stripping voltammetry (ASV) at a mercury film glassy carbon electrode (GCE). The proposed method couples the high sensitivity of anodic stripping analysis for zinc ions with effective magnetic separation for eliminating nonspecific adsorption effects and offers great promise for DNA hybridization analysis.  相似文献   

8.
Zinc isotope separation was studied by column chromatographies using resorcinol-formaldehyde-resin grafted with benzo-15-crown-5 in the porous silica beads. Chromatography was performed in a break-through manner by feeding the acetone solution of zinc chloride into the columns. Zinc isotopic abundance ratios of 66Zn/64Zn and 68Zn/64Zn were measured by ICP-MS. It has been found that the heavier isotopes are preferentially enriched at the front boundary region. This result proves 64Zn depleted zinc can be obtained by collecting the effluents of front boundary region. The separation coefficient (ɛ) observed by five meters migration treatment is 0.81 · 10−3 for the isotopic pair of 68Zn/64Zn at 25 °C and higher separation coefficient was obtained from more concentrated zinc chloride solution.  相似文献   

9.

69mZn was produced and separated for medical applications. Possibilities and perspectives for production of radiopharmaceuticals based on 69mZn containing derivatives of thiazine, thiazoline and thiourea are considered. Each one of the latters is a zinc chelator and a nitric oxide synthase (NOS) effector at the same time. Cytotoxic effect of NOS activator and NOS inhibitors are shown in experiments with HL-60, K-562 and MOLT-4 cell lines and in bone marrow cells of the acute B-lymphoblastic leukemia patients. Some of those compounds are worthy to get selected for further application as radiopharmaceuticals including their antitumor speciements.

  相似文献   

10.
The paraelectric–ferroelectric phase transition in two isostructural metal–organic frameworks (MOFs) [NH4][M(HCOO)3] (M=Mg, Zn) was investigated by in situ variable‐temperature 25Mg, 67Zn, 14N, and 13C solid‐state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder–order transition of NH4+ cations causes a change in dielectric properties. It is thought that [NH4][Mg(HCOO)3] exhibits a higher transition temperature than [NH4][Zn(HCOO)3] due to stronger hydrogen‐bonding interactions between NH4+ ions and framework oxygen atoms. 25Mg and 67Zn NMR parameters are very sensitive to temperature‐induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric–ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although 25Mg and 67Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal‐atom environments in [NH4][M(HCOO)3] give rise to relatively narrow spectra that can be acquired in 30–60 min at a low magnetic field of 9.4 T. Complementary 14N and 13C SSNMR experiments were performed to probe the role of NH4+–framework hydrogen bonding in the paraelectric–ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4][M(HCOO)3] system and shows great potential for molecular‐level studies on electric phenomena in a wide variety of MOFs.  相似文献   

11.
A method is described for the measurement of 67Zn/6*Zn and 70ZN/68Zn ratios by inductively coupled plasma/mass spectrometry with ultrasonic nebulization. The method provides sufficient accuracy and precision for zinc bioavailability studies that use samples of human feces or blood plasma. Extraction of zinc from ashed samples yields aqueous solutions sufficiently devoid of matrix ions that could affect count rates and isotope ratios. Effects of sodium matrix, zinc concentration, and instrumental parameters on the precision of isotope ratio determinations are documented. Additions of spikes enriched in 67Zn and 70Zn to natural-abundance fecal samples verify that ratios can be determined on solutions 30 μM in zinc (<300 nmol of zinc per sample) with relative accuracies of <1% and relative standard deviations (r.s.d.) of ?1% over the range from natural abundance to 370 atom% excess of 70Zn and to 84 atom% excess of 67Zn.  相似文献   

12.
13.
Metal–organic frameworks (MOFs) are an extremely important class of porous materials with many applications. The metal centers in many important MOFs are zinc cations. However, their Zn environments have not been characterized directly by 67Zn solid‐state NMR (SSNMR) spectroscopy. This is because 67Zn (I=5/2) is unreceptive with many unfavorable NMR characteristics, leading to very low sensitivity. In this work, we report, for the first time, a 67Zn natural abundance SSNMR spectroscopic study of several representative zeolitic imidazolate frameworks (ZIFs) and MOFs at an ultrahigh magnetic field of 21.1 T. Our work demonstrates that 67Zn magic‐angle spinning (MAS) NMR spectra are highly sensitive to the local Zn environment and can differentiate non‐equivalent Zn sites. The 67Zn NMR parameters can be predicted by theoretical calculations. Through the study of MOF‐5 desolvation, we show that with the aid of computational modeling, 67Zn NMR spectroscopy can provide valuable structural information on the MOF systems with structures that are not well described. Using ZIF‐8 as an example, we further demonstrate that 67Zn NMR spectroscopy is highly sensitive to the guest molecules present inside the cavities. Our work also shows that a combination of 67Zn NMR data and molecular dynamics simulation can reveal detailed information on the distribution and the dynamics of the guest species. The present work establishes 67Zn SSNMR spectroscopy as a new tool complementary to X‐ray diffraction for solving outstanding structural problems and for determining the structures of many new MOFs yet to come.  相似文献   

14.
This is the first report of supporting zinc cation on ƛ‐carrageenan/Fe3O4 magnetic nanoparticles. The structural and magnetic properties of this hybrid (Zn2+/ƛ‐carrageenan/Fe3O4 nanoparticles) were identified using various techniques. This green and efficient catalytic system was applied in the synthesis of biologically important quinolines. The products were obtained in good to high yields (52–95%) from a one‐pot reaction procedure involving aromatic aldehydes, enolizable aldehydes and aniline derivatives. Our method has many advantages such as mild reaction conditions, easy work‐up, use of a reusable magnetic catalyst and high yields of products.  相似文献   

15.
The neutron transmutation doping (NTD) of highly pure copper with zinc was investigated as a promising means of achieving controlled gradation of the zinc content in the range 1–20 μg g–1. The doping process leads to the enrichment of two stable isotopes 64Zn and 66Zn in a ratio which differs from that of natural isotopic distribution. Mass spectrometric investigations by thermal ionization mass spectrometry (TIMS) were performed to validate the results obtained by gamma spectrometry. The investigations included both determination of the isotopic ratios of the doped zinc isotopes and the analysis of the accumulated zinc contents by isotope dilution (ID) analysis. Thereby a sample-specific correction of the blank could be performed because the isotope 68Zn was not influenced, because of the transmutation process. The results obtained by TIMS prove the strict proportionality of the doped zinc content, in the range 5 to 20 μg g–1, to the neutron fluence. Comparison with gamma spectrometric results showed a very good agreement within the uncertainties.  相似文献   

16.
H2 may be evolved biphasically using a polarised liquid|liquid interface, acting as a “proton pump”, in combination with organic soluble metallocenes as electron donors. Sustainable H2 production requires methodologies to recycle the oxidised donor. Herein, the photo-recycling of decamethylferrocenium cations (DcMFc+) using aqueous core-shell semiconductor CdSe@CdS nanoparticles is presented. Negative polarisation of the liquid|liquid interface is required to extract DcMFc+ to the aqueous phase. This facilitates the efficient capture of electrons by DcMFc+ on the surface of the photo-excited CdSe@CdS nanoparticles, with hydrophobic DcMFc subsequently partitioning back to the organic phase and resetting the system. TiO2 (P25) and CdSe semiconductor nanoparticles failed to recycle DcMFc+ due to their lower conduction band energy levels. During photo-recycling, CdS (on CdSe) may be self-oxidised and photo-corrode, instead of water acting as the hole scavenger.  相似文献   

17.
Cellulose-ZnO composite was achieved by microwave assisted dissolution of cellulose in ionic liquid 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) followed by addition of premixed ground of Zn(CH3COO)2·2H2O and NaOH. Surface characterization, optical property and thermal stability of nanocomposite were determined by X-ray diffraction, scanning electron microscopy (SEM), UV–Vis spectroscopy and thermo gravimetric analysis. XRD patterns showed the ZnO in polymer matrix has the wurtzite structure. Presence of zinc oxide nanoparticles and cellulose fibers in the composites were observed by SEM. Band-edge transition of zinc oxide in the nanocomposite occurs in lower wavelength than bulk zinc oxide. Thermal stability of nanocomposite was lower than regenerated cellulose due to catalyst behavior of zinc oxide nanoparticles in cellulose matrix.  相似文献   

18.
Raman and infrared line parameters of Zn(NO3)2-H2O systems ranging from dilute solutions (25°C) to ionic liquids of low water content (75°C) are reported. At 25°C the solutions contain a very low concentration of inner sphere [Zn(ONO2)(H2O)5]+, outer sphere [Zn(H2O)6]2+[NO3], Zn(H2O) 6 2+ , and NO 3 (aq.). In the ionic liquids the ion triplet also exists. Manifestations of a change from the octahedral coordination of zinc to tetrahedral coordination when the water content is very low include the appearance of a 285 cm–1 band from the zinc nitrate bond and a shift to higher frequencies of the band from zinc-water.  相似文献   

19.
This study comes up with the facile preparation of Sr,Zn co-doped TiO2 xerogel film for boosting the short circuit current density of dye-sensitized solar cells (DSCs). The film contains 2.5-μm-diameter spheres assembled from 60 nm nanoparticles. X-ray photoelectron spectroscopy (XPS) shows that Sr2+ and Zn2+ ions to be well incorporated into the TiO2 crystal lattice without forming specific strontium and zinc compositions. The crystallite size, phase composition, and band structure of the spheres depend on the dopants concentration. Isolated energy levels near valence band as a result of the foreign ions introduction improve the photocatalytic activity of the prepared TiO2 spheres, enhancing the short circuit current density of the cells. The DSC co-doped with 0.075 at.% Sr and 0.4 at.% Zn showed the highest power conversion efficiency of 7.87 % and short circuit current density of 18.75 mA cm?2 thanks to lower charge transfer resistance (2.16 Ω cm2), lower electron transit time (1.19 ms), and higher electron diffusion coefficient (18.1 × 104 cm2 S?1) compared to the other cells, demonstrated by electrochemical impedance spectroscopy (EIS). The concept of the simultaneous introduction of alkaline earth ions and transition ions into TiO2 xerogel films will open up a new insight into the fabrication of high performance DSCs.  相似文献   

20.
Magnetic nuclei of isotope 67Zn (S ?5/2) were introduced into the active center of an angiotensin-converting enzyme instead of the zinc of usual isotope composition in order to consider their possible influence on the enzyme activity toward peptide substrates. No changes were observed in vitro, that gives us a possibility to study the influence of the zinc magnetic isotope on lymphocytes in various blood cell lines in vitro and ex vivo, neglecting contribution of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号