首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein profiling of human serum by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is potentially a new diagnostic tool for early detection of human diseases, including cancer. Sample preparation is a key issue in MALDI MS and the analysis of complex samples such as serum requires optimized, reproducible methods for handling and deposition of protein samples. Data acquisition in MALDI MS is also a critical issue, since heterogeneity of sample deposits leads to attenuation of ion signals in MALDI MS. In order to improve the robustness and reproducibility of MALDI MS for serum protein profiling we investigated a range of sample preparation techniques and developed a statistical method based on repeated analyses for evaluation of protein-profiling performance of MALDI MS. Two different solid-phase extraction (SPE) methods were investigated, namely custom-made microcolumns and commercially available magnetic beads. Using these two methods, nineteen different sample preparation methods for serum profiling by MALDI MS were systematically tested with regard to matrix selection, stationary phase, selectivity, and reproducibility. Microcolumns were tested with regard to chromatographic properties; reversed phase (C8, C18, SDB-XC), ion-exchange (anion, weak cation, mixed-phase (SDB-RPS)) and magnetic beads were tested with regard to chromatographic properties; reversed phase (C8) or affinity chromatography (Cu-IMAC). The reproducibility of each sample preparation method was determined by enumeration and analysis of protein signals that were detected in at least six out of nine spectra obtained by three triplicate analyses of one serum sample.A candidate for best overall performance as evaluated by the number of peaks generated and the reproducibility of mass spectra was found among the tested methods. Up to 418 reproducible peaks were detected in one cancer serum sample. These protein peaks can be part of a possible diagnostic profile, suggesting that this sample preparation method and data acquisition approach is suitable for large-scale analysis of serum samples for protein profiling.  相似文献   

2.
Serum profiling by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) holds promise as a clinical tool for early diagnosis of cancer and other human diseases. Sample preparation is key to achieving reproducible and well-resolved signals in MALDI-MS; a prerequisite for translation of MALDI-MS based diagnostic methods to clinical applications. We have investigated a number of MALDI matrices and several miniaturized solid-phase extraction (SPE) methods for serum protein concentration and desalting with the aim of generating reproducible, high-quality protein profiles by MALDI-MS. We developed a simple protocol for serum profiling that combines a matrix mixture of 2,5-dihydroxybenzoic acid and alpha-cyano-4-hydroxycinnamic acid with miniaturized SPE and MALDI-MS. Functionalized membrane discs with hydrophobic, ion-exchange or chelating properties allowed reproducible MALDI mass spectra (m/z 1000-12,000) to be obtained from serum. In a proof-of-principle application, SPE with chelating material and MALDI-MS identified protein peaks in serum that had been previously reported for distinguishing a person diagnosed with breast cancer from a control. These preliminary results indicate that this simple SPE/MALDI-MS method for serum profiling provides a versatile and scalable platform for clinical proteomics.  相似文献   

3.
MALDI mass spectrometry imaging (MSI) enables analysis of peptides along with histology. However, there are several critical steps in MALDI MSI of peptides, 1 of which is spectral quality. Suppression of MALDI matrix clusters by the aid of ammonium salts in MALDI experiments is well known. It is asserted that addition of ammonium salts dissociates potential matrix adducts and thereafter decreases matrix cluster formation. Consequently, MALDI MS sensitivity and mass accuracy increase. Up to our knowledge, a limited number of MALDI MSI studies used ammonium salts as matrix additives to suppress matrix clusters and enhance peptide signals. In this work, we investigated the effect of ammonium phosphate monobasic (AmP) as alpha‐cyano‐4‐hydroxycinnamic acid (α‐CHCA) matrix additive in MALDI MSI of peptides. Prior to MALDI MSI, the effect of varying concentrations of AmP in α‐CHCA was assessed in bovine serum albumin tryptic digests and compared with the control (α‐CHCA without AmP). Based on our data, the addition of AmP as matrix additive decreased matrix cluster formation regardless of its concentration, and specifically, 8 mM AmP and 10 mM AmP increased bovine serum albumin peptide signal intensities. In MALDI MSI of peptides, both 8 and 10 mM AmP in α‐CHCA improved peptide signals especially in the mass range of m/z 2000 to 3000. In particular, 9 peptide signals were found to have differential intensities within the tissues deposited with AmP in α‐CHCA (AUC > 0.60). To the best of our knowledge, this is the first MALDI MSI of peptides work investigating different concentrations of AmP as α‐CHCA matrix additive to enhance peptide signals in formalin‐fixed paraffin‐embedded (FFPE) tissues. Further, AmP as part of α‐CHCA matrix could enhance protein identifications and support MALDI MSI‐based proteomic approaches.  相似文献   

4.
So far, there have been only a few matrices reported for detection of polysaccharides with molecular weight higher than 3000 Daltons by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). In this work, we found that 2',4',6'-trihydroxyacetophenone (THAP) is a good matrix for MALDI time-of-flight MS analysis of polysaccharides with broad mass range. Large polysaccharides, dextrans, glycoproteins and polysialic acids have been successfully detected by MALDI-MS with THAP as matrix.  相似文献   

5.
2-Alkyl-5-hydroxychromones (2-alkyl-5-hydroxy-4-oxo-4H-1-benzopyran) and 3-alkoyl-2-alkyl-5-hydroxychromones (3-alkoyl-2-alkyl-5-hydroxy-4-oxo-4H-1-benzopyran) were prepared in one-step and one pot reaction by condensation of 2',6'-dihydroxyacetophenone with an alkoyl chloride in the presence of K2CO3.  相似文献   

6.
Over the past couple of years, proteomics pattern analysis has emerged as an effective method for the early diagnosis of diseases such as ovarian, breast, or prostate cancer, without identification of single biomarkers. MALDI-TOF MS, for example, offers a simple approach for fast and reliable protein profiling, especially by using carrier materials with various physical and chemical properties, in combination with a MALDI matrix. This approach is referred to as material-enhanced laser desorption/ionization (MELDI). In this paper, we report the development and application of derivatized carrier materials [cellulose, silica, poly(glycidyl methacrylate/divinylbenzene) (GMA/DVB) particles, and diamond powder] for fast and direct MALDI-TOF MS protein profiling. The applicability of MELDI for rapid protein profiling was evaluated with human serum samples. These carriers, having various hydrophobicities, resulted in characteristic mass fingerprints, even if all materials were derivatized with iminodiacetic acid (IDA) to yield an immobilized metal affinity chromatography (IMAC) functionality. Our study demonstrates that analyzing complex biological samples, such as human serum, by employing different MELDI carrier materials yielded type- and size-dependent performance variation.  相似文献   

7.
A peptide targeting method has been developed for diagnostic protein discovery, which combines proteolytic digestion of fractionated plasma proteins and liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC/ESI-TOFMS) profiling. Proteolysis prior to profiling overcomes molecular weight limitations and compensates for the poor sensitivity of matrix-assisted laser desorption/ionization (MALDI) protein profiling. LC/MS increases the peak capacity compared to crude fractionation techniques or single sample MALDI analysis. Differentially expressed peptides are targeted in the mass chromatograms using bioinformatic techniques and subsequently sequenced with MALDI tandem MS. In a model study comparing pancreatic cancer patients to controls, 74% of the peptide targets were successfully sequenced. This profiling method was superior to previous experiments using single sample MALDI analysis for protein profiling or proteolytic peptide profiling, because more potential protein markers were identified.  相似文献   

8.
ProteinChip surface‐enhanced laser desorption/ionization technology and magnetic beads‐based ClinProt system are commonly used for semi‐quantitative profiling of plasma proteome in biomarker discovery. Unfortunately, the proteins/peptides detected by MS are non‐recoverable. To obtain the protein identity of a MS peak, additional time‐consuming and material‐consuming purification steps have to be done. In this study, we developed a magnetic beads‐based proteomic fingerprinting method that allowed semi‐quantitative proteomic profiling and micropreparative purification of the profiled proteins in parallel. The use of different chromatographic magnetic beads allowed us to obtain different proteomic profiles, which were comparable to those obtained by the ProteinChip surface‐enhanced laser desorption/ionization technology. Our assays were semi‐quantitative. The normalized peak intensity was proportional to concentration measured by immunoassay. Both intra‐assay and inter‐assay coefficients of variation of the normalized peak intensities were in the range of 4–30%. Our method only required 2 μL of serum or plasma for generating enough proteins for semi‐quantitative profiling by MALDI‐TOF‐MS as well as for gel electrophoresis and subsequent protein identification. The protein peaks and corresponding gel spots could be easily matched by comparing their intensities and masses. Because of its high efficiency and reproducibility, our method has great potentials in clinical research, especially in biomarker discovery.  相似文献   

9.
Reversed-phase microcapillary chromatography (RP-microLC) combined with electrospray ionization tandem mass spectrometry (ESI-MS/MS) is one of two prevailing techniques in proteomic analysis, the other being matrix-assisted laser desorption/ionization (MALDI). Despite the arguably better dynamic range obtainable with ESI, MALDI is increasingly popular due to ease of use, ruggedness and the ability to decouple separation from ionization. By contrast, in order to take advantage of the sensitivity and dynamic range afforded by the concentration-dependent nature of ESI, it is directly coupled to separations that take place in small i.d. RP-microLC columns. This gain in sensitivity often comes at a loss of ruggedness due to clogging of the small i.d. RP-microLC columns, one result of which is limited sample throughput. Here we describe a combined micropre-column-microLC-ESI device that is sensitive, rugged and modular in design allowing facile construction and troubleshooting. Due to low signal-to-noise as little as 1 attomole of a peptide can be selected by data-dependent methods for collision-induced dissociation. Importantly, the resulting tandem mass spectrum is of high enough quality to identify the peptide sequence by a database search against a complex database using SEQUEST. Finally, the device is demonstrated to be rugged as judged by >60 consecutive reversed-phase microLC separations on complex peptide mixtures before chromatographic resolution is degraded.  相似文献   

10.
This study records a novel application of methacrylate-based monolithic columns for MALDI-TOF/TOF MS analyses in proteomics for pre-concentration and separation of peptides derived from protein digestion. Reversed-phase monolithic capillary columns (30 mm × 0.32 mm i.d.) were created inside the fused silica capillary via thermal-initiated free-radical polymerization of ethylene glycol dimethacrylate and lauryl methacrylate monomers in the presence of 1-propanol and 1,4-butandiol as a porogen system. The elution of peptides was achieved using a linear gradient of acetonitrile from 0 to 60% in water with 0.1% trifluoroacetic acid formed in a microsyringe. Individual fractions of separated peptides were collected on the MALDI target spots covered with alpha-cyano-4-hydroxycinnamic acid used as a matrix and then they were analyzed using MALDI-TOF/TOF mass spectrometry. The developed method was tested with a mixture of tryptic peptides from bovine serum albumin and its applicability was also tested for tryptic in-gel digests from barley grain extracts of water soluble proteins separated using SDS gel electrophoresis. The number of detected peptides was approximately three to four times higher compared to the analysis without previous separation. These results show an improved quality of sample information with the higher amount of identified peptides which increased protein sequence coverage and improved sensitivity of mass spectrometry measurements.  相似文献   

11.
Human plasma is a readily available clinical sample that reflects the status of the body in normal physiological and disease states. Although the wide dynamic range and immense complexity of plasma proteins are obstacles, comprehensive proteomic analysis of human plasma is necessary for biomarker discovery and further verification. Various methods such as immunodepletion, protein equalization and hyper fractionation have been applied to reduce the influence of high-abundance proteins (HAPs) and to reduce the high level of complexity. However, the depth at which the human plasma proteome has been explored in a relatively short time frame has been limited, which impedes the transfer of proteomic techniques to clinical research. Development of an optimal strategy is expected to improve the efficiency of human plasma proteome profiling.  相似文献   

12.
Imaging mass spectrometry (IMS) is an emergent and innovative approach for measuring the composition, abundance and regioselectivity of molecules within an investigated area of fixed dimension. Although providing unprecedented molecular information compared with conventional MS techniques, enhancement of protein signature by IMS is still necessary and challenging. This paper demonstrates the combination of conventional organic washes with an optimized aqueous‐based buffer for tissue section preparation before matrix‐assisted laser desorption/ionization (MALDI) IMS of proteins. Based on a 500 mM ammonium formate in water–acetonitrile (9:1; v/v, 0.1% trifluororacetic acid, 0.1% Triton) solution, this buffer wash has shown to significantly enhance protein signature by profiling and IMS (~fourfold) when used after organic washes (70% EtOH followed by 90% EtOH), improving the quality and number of ion images obtained from mouse kidney and a 14‐day mouse fetus whole‐body tissue sections, while maintaining a similar reproducibility with conventional tissue rinsing. Even if some protein losses were observed, the data mining has demonstrated that it was primarily low abundant signals and that the number of new peaks found is greater with the described procedure. The proposed buffer has thus demonstrated to be of high efficiency for tissue section preparation providing novel and complementary information for direct on‐tissue MALDI analysis compared with solely conventional organic rinsing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A transfer of energy into the internal modes of the matrix and analyte is expected to occur during matrix-assisted laser desorption/ioniziation (MALDI) processes. Both the physical and thermochemical properties of the MALDI matrix used can influence the ion internal energy and analyte ion fragmentation. Here we report the effect of several MALDI matrices on the relative internal energy of the 2'-deoxyadenylyl-(3',5')-2'-deoxyguanosine (AG) anion. Relative internal energies were probed by low-energy collision-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer. Sublimation temperatures of the matrices under study were also determined and found to lie between 409 and 455 K. Analyte ion internal and initial kinetic energies did not correlate with matrix sublimation temperatures. In contrast, a strong correlation between the relative internal energy of the analyte anions and the gas-phase basicity of the matrix anions was found. These results suggest that gas-phase proton transfer reactions play an important role in MALDI analyte ion formation and influence their internal energy and fragmentation behavior. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

14.
We investigated the application of a high‐resolution Orbitrap mass spectrometer equipped with an electrospray ionization (ESI) source and a matrix‐assisted laser desorption/ionization‐time‐of‐flight (MALDI‐TOF) mass spectrometer to the metabolite profiling of a model small interfering RNA (siRNA) duplex TSR#34 and compared their functions and capabilities. TSR#34 duplex was incubated in human serum in vitro, and the duplex and its metabolites were then purified by ion exchange chromatography in order to remove the biological matrices. The fraction containing the siRNA duplex and its metabolites was collected and desalted and then subjected to high‐performance liquid chromatography (HPLC) equipped with a reversed phase column. The siRNA and its metabolites were separated into single strands by elevated chromatographic temperature and analyzed using the ESI‐Orbitrap or the MALDI‐TOF mass spectrometer. Using this method, the 5' and/or 3' truncated metabolites of each strand were detected in the human serum samples. The ESI‐Orbitrap mass spectrometer enabled differentiation between two possible RNA‐based sequences, a monoisotopic molecular mass difference which was less than 2 Da, with an intrinsic mass resolving power. In‐source decay (ISD) analysis using a MALDI‐TOF mass spectrometer allowed the sequencing of the RNA metabolite with characteristic fragment ions, using 2,4‐dihydroxyacetophenone (2,4‐DHAP) as a matrix. The ESI‐Orbitrap mass spectrometer provided the highest mass accuracy and the benefit of on‐line coupling with HPLC for metabolite profiling. Meanwhile, the MALDI‐TOF mass spectrometer, in combination with 2,4‐DHAP, has the potential for the sequencing of RNA by ISD analysis. The combined use of these methods will be beneficial to characterize the metabolites of therapeutic siRNA compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Proteins in the nucleus accumbens mediate many cocaine‐induced behaviors. In an effort to measure changes in nucleus accumbens protein expression as potential biomarkers for addiction, coronal tissue sections were obtained from rats that developed behavioral sensitization after daily administration of cocaine, or from daily saline‐treated controls. The tissue sections were subjected to matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry (MS) profiling and tissue imaging. For profiling experiments, brain sections were manually spotted with matrix over the nucleus accumbens, a brain region known to regulate cocaine sensitization. Summed mass spectra (10 000 laser shots, grid) were acquired and spectra were aligned to reference peaks. Using bioinformatics tools, eight spectral features were found to be altered by cocaine treatment. Based on additional sequencing experiments with MALDI tandem MS and database searches of measured masses, secretoneurin (m/z 3653) was identified as having an increased expression. In addition, the distribution of m/z 3653 in the nucleus accumbens was determined by MALDI tissue imaging, and the increased expression of its precursor protein, secretogranin II, was verified by immunoblotting. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Diagnosis of schizophrenia does not have a clear objective test at present, so we aimed to identify the potential biomarkers for the diagnosis of schizophrenia by comparison of serum protein profiling between first‐episode schizophrenia patients and healthy controls. The combination of a magnetic bead separation system with matrix‐assisted laser desorption/ionization time‐of‐flight tandem mass spectrometry (MALDI‐TOF/TOF‐MS) was used to analyze the serum protein spectra of 286 first‐episode patients with schizophrenia, 41 chronic disease patients and 304 healthy controls. FlexAnlysis 3.0 and ClinProToolsTM 2.1 software was used to establish a diagnostic model for schizophrenia. The results demonstrated that 10 fragmented peptides demonstrated an optimal discriminatory performance. Among these fragmented peptides, the peptide with m/z 1206.58 was identified as a fragment of fibrinopeptide A. Receiver operating characteristic analysis for m/z 1206.58 showed that the area under the curve was 0.981 for schizophrenia vs healthy controls, and 0.999 for schizophrenia vs other chronic disease controls. From our result, we consider that the analysis of serum protein spectrum using the magnetic bead separation system and MALDI‐TOF/TOF‐MS is an objective diagnostic tool. We conclude that fibrinopeptide A has the potential to be a biomarker for diagnosis of schizophrenia. This protein may also help to elucidate schizophrenia disease pathogenesis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Atmospheric pressure matrix‐assisted laser desorption/ionization (AP‐MALDI) has proven a convenient and rapid method for ion production in the mass spectrometric (MS) analysis of biomolecules. AP‐MALDI and electrospray ionization (ESI) sources are easily interchangeable in most mass spectrometers. However, AP‐MALDI suffers from less‐than‐optimal sensitivity due to ion losses during transport from the atmosphere into the vacuum of the mass spectrometer. Here, we study the signal‐to‐noise ratio (S/N) gains observed when an on‐chip dynamic pre‐concentration/focusing approach is coupled to AP‐MALDI for the MS analysis of neuropeptides and protein digests. It was found that, in comparison with conventional AP‐MALDI targets, focusing targets showed (1) a sensitivity enhancement of approximately two orders of magnitude with S/N gains of 200–900 for hydrophobic substrates, and 150–400 for weak cation‐exchange (WCX) substrates; (2) improved detection limits as low as 5 fmol/µL for standard peptides; (3) significantly reduced matrix background; and (4) higher inter‐day reproducibility. The improved sensitivity allowed successful tandem mass spectrometric (MS/MS) sequencing of dilute solutions of a derivatized tryptic digest of a protein standard, and enabled the first reported AP‐MALDI MS detection of neuropeptides from Aedes aegypti mosquito heads. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
An automated proteolytic digestion bioreactor and droplet deposition system was constructed with a plastic microfluidic device for off-line interfacing to matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The microfluidic chips were fabricated in poly(methyl methacrylate) (PMMA), using a micromilling machine and incorporated a bioreactor, which was 100 microm wide, 100 microm deep, and possessed a 4 cm effective channel length (400 nL volume). The chip was operated by pressure-driven flow and mounted on a robotic fraction collector system. The PMMA bioreactor contained surface immobilized trypsin, which was covalently attached to the UV-modified PMMA surface using coupling reagents N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and hydroxysulfosuccinimide (sulfo-NHS). The digested peptides were mixed with a MALDI matrix on-chip and deposited as discrete spots on MALDI targets. The bioreactor provided efficient digestion of a test protein, cytochrome c, at a flow rate of 1 microL/min, producing a reaction time of approximately 24 s to give adequate sequence coverage for protein identification. Other proteins were also evaluated using this solid-phase bioreactor. The efficiency of digestion was evaluated by monitoring the sequence coverage, which was 64%, 35%, 58%, and 47% for cytochrome c, bovine serum albumin (BSA), myoglobin, and phosphorylase b, respectively.  相似文献   

19.
A robust and sensitive sample preparation method is presented for matrix-assisted laser desorption ionization (MALDI) mass spectrometric analysis of low nanomolar concentrations of proteins containing high amounts of common salts and buffers. This method involves the production of densely packed sub-micrometer matrix crystals by depositing a matrix solution on top of a matrix seed-layer prepared on a MALDI target. A sub-microliter aliquot of analyte solution is then directly added to the top of the matrix crystals to form a thin-layer. alpha-Cyano-4-hydroxycinnamic acid (4-HCCA) is used as matrix and demonstrated to give better performance than other commonly used matrices, such as 2,5-dihydroxybenzoic acid (DHB), 2-(4-hydroxy-phenylazo) benzoic acid (HABA), or sinapinic acid. This three-layer method is shown to be superior to the other MALDI sample preparation methods, particularly for handling low nanomolar protein solutions containing salts and buffers.  相似文献   

20.
Dou P  Liu Z  He J  Xu JJ  Chen HY 《Journal of chromatography. A》2008,1190(1-2):372-376
Human erythropoietin (hEPO) is a glycoprotein hormone produced primarily by the kidney, which stimulates red blood cell production. Recombinant human erythropoietin (rhEPO), generally produced in Chinese hamster ovary (CHO) cells, can be used as not only a therapeutic protein but also a doping agent in sports. Profiling of EPO glycoforms is a critical means for quality control in pharmaceutical industrial and anti-doping analysis of misuse in sports. However, the existing methods for the analysis of EPO are associated with either time consuming or poor resolution. In this work, a rapid and high-resolution glycoform profiling method was presented based on capillary isoelectric focusing (cIEF) with whole column imaging detection (WCID). Experimental conditions that influence the separation were investigated. Under optimized conditions, rhEPO from three different sources were resolved into distinct populations within 5 min with excellent reproducibility. As compared with existing methods, the presented method exhibited the advantages of speed and high resolution. If combined with an effective sample enrichment step and a much more sensitive WCID version, the method can be a potential alternative for the detection of rhEPO misuse in sports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号