首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteolytic activities isolated from the marine demosponges Geodia cydonium and Suberites domuncula were analyzed by 2-D zymography, a technique that combines IEF and zymography. After purification, a 200 kDa proteolytically active protein band was obtained from G. cydonium when analyzed in gelatin copolymerized 1-D zymograms. The enzymatic activity was quantified using alpha-N-benzoyl-D-arginine p-nitroanilide (BAPNA) as a substrate and corresponded to a serine protease. The protease activity was resistant to urea and SDS. DTT and 2-mercaptoethanol (2-ME) did not significantly change the protease activity, but induced a shift in molecular mass of the proteolytic band to lower M(r) values as detected by zymography. Under mild denaturing conditions, lower M(r) bands (<200 kDa) were identified in 1-D zymograms, suggesting that the protease is composed of subunits which retain the catalytic activity. After 2-D zymography, the protease from G. cydonium revealed a pI of 8.0 and an M(r) shift from 200 to 66 kDa. To contrast these results, a cytosolic sample from S. domuncula was analyzed. The proteolytic activity of this sponge after 2-D zymography corresponded to an M(r) of 40 kDa and a pI of 4.0. The biological function of both sponge proteases is not yet known. This study demonstrates that mild denaturing conditions required for IEF may alter the interpretation of the 2-D zymography, and care must be taken during sample preparation.  相似文献   

2.
Sequential acidic precipitation followed by a single chromatographic step (gel filtration) allowed the recovery of a collagenolytic fraction containing several proteases from by-products of snow crab (Chionoecetes opilio). The partial purification was particularly efficient to recover tryptic (purification fold = 1,352.5; yield = 110%) but also chymotryptic, elastolytic, and collagenolytic activities. A temperature of 40 °C and pH 8.0–8.5 were optimal for enzyme activity, which was stable for 2 h under these conditions. Calcium was not required for stability and thus activity. The isoelectric points of the protein components ranged from 3.7 to 4.6. Zymography revealed 29 and 48 kDa major components and others from 22 to 56 kDa. Enzymes were inhibited by PMSF and TLCK but were insensitive to TPCK. In view of these properties, the proteases likely belong to the serine collagenase group. Inhibition by EDTA could be due to a mechanism other than Ca2+ chelation. Using a food system (ground fish), the fraction was more proteolytic than a commercial bacterial protease, suggesting potential applications in enzymatic hydrolysis processes.  相似文献   

3.
A study of the effects of single and combined protease hydrolysis on myofibrillar versus collagenous proteins of poultry by-products has been conducted. The aim was to contribute with knowledge for increased value creation of all constituents of these complex by-products. A rational approach was implemented for selecting proteases exhibiting the most different activity towards the major protein-rich constituents of mechanically deboned chicken residue (MDCR). An initial activity screening of 18 proteases on chicken meat, turkey tendons and MDCR was conducted. Based on weight yield, size exclusion chromatography (SEC) and SDS-PAGE, stem Bromelain and Endocut-02 were selected. Studies on hydrolysis of four different poultry by-products at 40 °C, evaluated by protein yield, SEC, and SDS-PAGE, indicate that the proteases’ selectivity difference can be utilized in tailor-making hydrolysates, enriched in either meat- and collagen-derived peptides or gelatin. Three modes of stem Bromelain and Endocut-02 combinations during hydrolysis of MDCR were performed and compared with single protease hydrolysis. All modes of the protease combinations resulted in a similar approximately 15% increase in product yield, with products exhibiting similar SEC and SDS-PAGE profiles. This shows that irrespective of the modes of combination, the use of more than one enzyme in hydrolysis of collagen-rich material can provide means to increase the total protein yield and ultimately contribute to increased value creation of poultry by-products.  相似文献   

4.
The ability of Trichoderma atroviride F-534 to utilize plant waste byproducts derived from processing of vegetables and fruits, as the major source of organic carbon and nitrogen for growth and protease production, was tested. The submerged cultivation of T. atroviride F-534 in the mineral base of the Czapek–Dox medium supplemented with plant waste byproducts resulted into copious biomass formation and was accompanied by secretion of several proteolytic enzymes. Zymography analysis of fungal culture filtrates showed that the high-molecular weight (HMW) protease(s) (from 100 kDa to 230 kDa) represent the major portion of secreted enzymes. Serine-type proteases and metalloproteases were predominant, although all known types of proteolytic enzymes were detected dependent on the type of inducer (substrate). The most conspicuous feature of secreted proteases was that the zymography patterns were unique for each plant material tested. These results confirm our previous finding obtained with purified proteins. Results also suggest that HMW protease(s) may participate in the heterotrophic/saprophytic/mode of life of this fungus. Their identity remains, however, obscure.  相似文献   

5.
Four different commercial proteases (Protease-P-Amano6, Alcalase®, Protex 7L®, and Neutrase®) were evaluated for recovering lipids and protein simultaneously by hydrolysis. Fungal protease (Protease-P-Amano6) resulted in maximum lipid recovery (74.9%) followed by alcalase (61.7%). Peroxide value (PV; milli-equivalents of oxygen per kilogram) in the oil recovered after hydrolysis was 40.48 compared to 8.7 in lipids from fresh fish viscera. However, addition of tertiary butyl hydroxyl quinine at 200 ppm level maintained the PV of oil recovered by hydrolysis closer to oil from fresh waste. Degree of hydrolysis was the highest in case of fungal protease (49.1%) where neutrase resulted in higher total antioxidant activity (micrograms of ascorbic acid equivalents per milligram protein) of 34.4. Protein hydrolysate prepared using fungal protease had the higher diphenylpicrylhydrazyl radical scavenging activity as compared to those from other enzymes. The results indicate the utility of commercial proteases in providing an ecofriendly and feasible solution for reducing disposal problems associated with fish processing.  相似文献   

6.
Microbial proteases play diverse and important roles in bacterial virulence but their detection and characterisation is often hampered by their limited abundance or lack of expression in the absence of suitable environmental signals. We describe here a sensitive proteomic approach to detect proteases that are under the control of a virulence regulator and to characterise their recognition motifs. Using MG++-depleted growth media or a mutant strain of Salmonella in which the PhoP-PhoQ virulence regulatory system is constitutively active, truncated forms of DnaK, elongation factor G, elongation factor Tu and ribosomal protein S1 proteins were detected. Two other global regulatory mutants and cells exposed to acid or to oxidative stress failed to produce the truncated proteins, indicating specific control of the protease activity by the PhoP-PhoQ system. Our results suggest that at least two proteases are induced. To define the proteolytic cleavage sites of one of the proteases, peptides from each of the truncated proteins were identified by tryptic mass fingerprinting/nanoelectrospray mass spectrometry and mapped onto the sequence of the intact protein. Alignment of the regions around the cut site indicates that the protease recognises a dibasic amino acid motif characteristic of the omptin protease family. The induction of such proteases in bacteria depleted of Mg++ ions may contribute to the PhoPQ-mediated resistance of Salmonella to cationic antimicrobial peptides. Additionally, our results suggest it would be prudent to keep the concentration of this ion above micromolar levels during bacterial sample preparation for proteomic analyses.  相似文献   

7.
An acid protease having milk clotting activity has been isolated fromMucor bacilliformis cultures. The enzyme was basically purified by ionic exchange chromatography. An average yield of 29 mg purified product was obtained from 100 mL crude extract. As purity criteria, SDS-PAGE, reverse-phase HPLC, and N-terminal analysis were performed. The protease is a protein composed of a single polypeptide chain with glycine at the N-terminus. The mol wt is approx 32,000, and its amino acid composition is very similar to those of other fungal proteases. As expected, its clotting activity was drastically inhibited by pepstatin A action. On the other hand, its instability against heat treatment and its clotting/proteolytic activity ratio indicate that it may be considered as a potential substitute for bovine chymosin. Index Entries:Mucor bacilliformis protease; milk clotting enzyme; acid protease; fungal protease; aspartyl protease.  相似文献   

8.
In this paper we analyzed the antiprotozoal effects of eighteen Cuban propolis extracts (brown, red and yellow type) collected in different geographic areas, using Leishmania amazonensis (as a model of intracellular protozoa) and Trichomonas vaginalis (as a model of extracellular protozoa). All evaluated propolis extracts caused inhibitory effect on intracellular amastigotes of L. amazonensis. However, cytotoxicity on peritoneal macrophages from BALB/c mice was observed. Only five samples decreased the viability of T. vaginalis trophozoites at concentrations lower than 10 microg/mL. No correlation between the type of propolis and antiprotozoal activity was found. Cuban propolis extracts demonstrated activity against both intracellular and extracellular protozoa model, as well as the potentialities of propolis as a natural source to obtain new antiprotozoal agents.  相似文献   

9.
A multiplexed mass spectrometry based assay scheme for the simultaneous determination of five different substrate/product pairs was developed as a tool for screening of proteolytic activities in snake venom fractions from Bothrops moojeni. The assay scheme was employed in the functional characterization of eight model proteases. Time-resolved reaction profiles were generated and the relative reaction progress at each time point was determined. These were used to semi-quantitatively sort the catalytic activities of each enzyme towards the respective substrates into six classes. The resulting activity pattern served as an activity fingerprint for each enzyme. The multiplex assay scheme was then applied to a screening for proteolytic activities in fractions of the pre-separated venom from B. moojeni. Activity patterns of each fraction were generated and used to sort the fractions into three different categories of activity. By comparison of the fingerprint activity patterns of the venom fractions and the model enzymes, a compound with proteolytic properties similar to activated protein C was detected.  相似文献   

10.
Actinidin, a member of the papain-like family of cysteine proteases, is abundant in kiwifruit. To date, a few studies have been provided to investigate the proteolytic activity and substrate specificity of actinidin on native proteins. Herein, the proteolytic activity of actinidin was compared to papain on several different fibrous and globular proteins under neutral, acidic and basic conditions. The digested samples were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometry to assess the proteolytic effect. Furthermore, the levels of free amino nitrogen (FAN) of the treated samples were determined using the ninhydrin colorimetric method. The findings showed that actinidin has no or limited proteolytic effect on globular proteins such as immunoglobulins including sheep IgG, rabbit IgG, chicken IgY and fish IgM, bovine serum albumin (BSA), lipid transfer protein (LTP), and whey proteins (α-lactalbumin and β-lactoglobulin) compared to papain. In contrast to globular proteins, actinidin could hydrolyze collagen and fibrinogen perfectly at neutral and mild basic pHs. Moreover, this enzyme could digest pure α-casein and major subunits of micellar casein especially in acidic pHs. Taken together, the data indicated that actinidin has narrow substrate specificity with the highest enzymatic activity for the collagen and fibrinogen substrates. The results describe the actinidin as a mild plant protease useful for many special applications such as cell isolation from different tissues and some food industries as a mixture formula with other relevant proteases.  相似文献   

11.
Digestive gland protease pH optima and specific activities determined in Penaeus indicus with casein, azocasein, Azocoll, and Congo red fibrin as substrates were pH 7.7-9.2, 210-371 micromol of tyrosine/mg of homogenate protein/min; pH 7.8, 36; pH 6.0-7.0, 7; and pH 8.9-9.2, 7A delta0.001 U/mg of homogenate protein/min, respectively. Activity in the shrimp was stable during frozen storage but relatively labile and very low (1.043 azocasein units) in the Norwegian lobster, Nephrops norvegicus. The high activity in shrimp is significant in aquaculture and may be a source of proteolytic enzymes for industrial use. The rapid deterioration after landing may be a consequence of the high and stable activity. The low activity in the lobster may present a problem in culture and requires a more critical choice of feed as well as further investigation. 4-(2-Aminoethyl)-benzenesulfonyl fluoride hydrochloride was a very convenient, fast-acting, and effective inhibitor of shrimp trypsin and chymotrypsin but did not completely inhibit general protease activity in shrimp and had a negligible effect on the lobster. A significant component of that activity may be from nonserine proteases (such as the exoproteases carboxypeptidase A and B and the leucine aminopeptidases), whose proportion relative to the serine proteases may be greater in the lobster.  相似文献   

12.
This present study investigated the ability of various soy protein hydrolysates(SPHs)in binding calcium.It was demonstrated that the amount of Ca-bound depended greatly on the SPHs obtained using different proteases,which included:neutrase, flavourzyme,protease M and pepsin.The maximum level of Ca-bound(66.9 mg/g)occurred when protease M was used to hydrolyze soy protein.Peptide fragments exhibiting high Ca-binding capacity had molecular weights of either 14.4 or 8-9 kDa.The level of Ca-bound increased linearly with the increment of carboxyl content in SPHs,and further deamidation on SPHs from protease M improved Ca-binding of the hydrolysate.  相似文献   

13.
The physiological function of an allergen might be an important factor for the allergenicity. The major grass pollen allergen Phl p 1 shows sequence similarities to the consensus sequences of cysteine proteases. However, up to now, the proteolytic activity of Phl p 1 is controversial. The culture supernatant of Phl p 1-transfected clones from Pichia pastoris showed a proteolytic activity but this might be due to Phl p 1 or irrelevant yeast contaminants. To solve this question, we made use of the zymogram technique and improved it. Substrate as well as substrate concentration was changed from 1% casein to 0.25% skimmed milk powder. For staining, we used a colloidal Coomassie stain (RotiBlue) with a higher sensitivity and better practicability than the conventional Coomassie staining. The proteins in the zymogels and in the SDS-PAGE gels showed similar electrophoretic mobility. Furthermore, the zymogels could be blotted and immunostained. Thus, the molecular mass of the proteolytic bands could be determined and directly compared with immunoblotting results. To clearly assign the protease, we separated the culture supernatant of the Phl p 1-transfected P. pastoris clone by affinity chromatography with monoclonal antibody. Our studies demonstrate that the proteolytic activity did not belong to the recombinant allergen but to the yeast proteins. The enzyme was classified by zymogram inhibition tests as a strong serine protease.  相似文献   

14.
Since proteases are involved in a wide range of physiological and disease states, the development of novel tools for imaging proteolytic enzyme activity is attracting increasing interest from scientists. Peptide substrates containing proteinogenic amino acids are often the first line of defining enzyme specificity. This Minireview outlines examples of major recent advances in probing proteases using unnatural amino acid residues, which greatly expands the possibilities for designing substrate probes and inhibitory activity‐based probes. This approach already yielded innovative probes that selectively target only one active protease within the group of enzymes exhibiting similar specificity both in cellular assays and in bioimaging research.  相似文献   

15.
Cysteine proteases represent a broad class of proteolytic enzymes widely distributed among living organisms. Although well known as typical lysosomal enzymes, cysteine proteases are actually recognized as multi-function enzymes, being involved in antigen processing and presentation, in membrane-bound protein cleavage, as well as in degradation of the cellular matrix and in processes of tissue remodeling. Very recently, it has been shown that the NO(-donor)-mediated chemical modification of the Cys catalytic residue of cysteine proteases, including Coxsackievirus and Rhinovirus cysteine proteases, cruzain, Leishmania infantum cysteine protease, falcipain, papain, as well as mammalian caspases, cathepsins and calpain, blocks the enzyme activity in vitro and in vivo. Here, inhibition of representative cysteine proteases by NO(-donors) is reviewed.  相似文献   

16.
Summary When mammalian plasma was passed through a chromatographic material containing aminoethyl functional groups, ceruloplasmin was selectively retained. At a specific ionic strength of the eluant buffer, a single chromatographic peak corresponding to the electrophoretically homogeneous purified ceruloplasmin was eluted. This single-step procedure is easy to perform and gave a purification yield of more than 60%. The direct immobilization of the ceruloplasmin, while it was still adsorbed and concentrated at the basal part of the gel bed (last stage of the purification), was achieved by carbodiimide treatment, with coupling yields of 50–70%.The immobilized ceruloplasmin retained about 100% of its enzymatic activity. Kinetic studies have shown a decreased affinity of the immobilized protein for the substrate and a maximal velocity of 81% as compared to the free protein. The immobilized ceruloplasmin was much more resistant to proteolytic attack than the free enzyme which is highly protease sensitive. Using pronase and thermolysine proteases, the activity of free ceruloplasmin was entirely lost in few hours. However, under similar conditions, the immobilized ceruloplasmin exhibited a high stability, maintaining its integral activity even after 24 hours of proteolytic attack.  相似文献   

17.
Protease inhibitors can be versatile tools mainly in the fields of medicine, agriculture and food preservative applications. Fungi have been recognized as sources of protease inhibitors, although there are only few such reports on mushrooms. This work reports the purification and characterization of a trypsin inhibitor from the fruiting body of edible mushroom Pleurotus floridanus (PfTI) and its effect on the activity of microbial proteases. The protease inhibitor was purified up to 35-fold by DEAE-Sepharose ion exchange column, trypsin-Sepharose column and Sephadex G100 column. The isoelectric point of the inhibitor was 4.4, and its molecular mass was calculated as 37 kDa by SDS-PAGE and 38.3 kDa by MALDI-TOF. Inhibitory activity confirmation was by dot-blot analysis and zymographic activity staining. The specificity of the inhibitor toward trypsin was with Ki of 1.043?×?10?10 M. The inhibitor was thermostable up to 90 °C with maximal stability at 30 °C, active over a pH range of 4–10 against proteases from Aspergillus oryzae, Bacillus licheniformis, Bacillus sp. and Bacillus amyloliquefaciens. Results indicate the possibility of utilization of protease inhibitor from P. floridanus against serine proteases.  相似文献   

18.
This study examined the production of protein hydrolysates with controlled composition from cheese whey proteins. Cheese whey was characterized and several hydrolysis experiments were made using whey proteins and purified β-lactoglobulin, assubstrates, and trypsin and α-chymotrypsin, as catalysts, at two tem peratures and several enzyme concentrations. Maximum degrees of hydrolysis obtained experimentally were compared to the theoretical values and peptide compositions were calculated. For trypsin, 100% of yield was achieved; for α-chymotrypsin, hydrolysis seemed to be dependent on the oligopeptide size. The results showed that the two proteases could hydrolyze β-lactoglobulin. Trypsin and α-chymotrypsin were stable at 40°C, but a sharp decrease in the protease activity was observed at 55°C.  相似文献   

19.
As nutrition and a health tonic for both medicine and food, the protein content of Oviductus Ranae is more than 40%, making it an ideal source to produce antioxidant peptides. This work evaluated the effects of six different proteases (pepsin, trypsin, papain, flavourzyme, neutral protease and alcalase) on the antioxidant activity of Oviductus Ranae protein, and analyzed the relationship between the hydrolysis time, the degree of hydrolysis (DH) and the antioxidant activity of the enzymatic hydrolysates. The results showed that the antioxidant activity of Oviductus Ranae protein was significantly improved and the optimal hydrolysis time was maintained between 3–4 h under the action of different proteases. Among them, the protein hydrolysate which was hydrolyzed by pepsin for 180 min had the strongest comprehensive antioxidant activity and was most suitable for the production of antioxidant peptides. At this time, the DH, the DPPH radical scavenging activity, the absorbance value of reducing power determination and the hydroxyl radical scavenging activity corresponding to the enzymatic hydrolysate were 13.32 ± 0.24%, 70.63 ± 1.53%, 0.376 ± 0.009 and 31.96 ± 0.78%, respectively. Correlation analysis showed that there was a significant positive correlation between the hydrolysis time, the DH and the antioxidant activity of the enzymatic hydrolysates, further indicating that the hydrolysates of Oviductus Ranae protein had great antioxidant potential. The traditional anti-aging efficacy of Oviductus Ranae is closely related to the scavenging of reactive oxygen species, and its hydrolysates have better antioxidant capacity, which also provides support for further development of its traditional anti-aging efficacy.  相似文献   

20.
Our current understanding of the role and regulation of protease activity in normal and pathogenic processes is limited by our ability to measure and deconvolute their enzymatic activity. To address this limitation, an approach was developed that utilizes rhodamine-based fluorogenic substrates encoded with PNA tags. The PNA tags address each of the substrates to a predefined location on an oligonucleotide microarray through hybridization, thus allowing the deconvolution of multiple signals from a solution. A library of 192 protease substrates was prepared by split and mix combinatorial synthesis. The methodology and validation of this approach for profiling proteolytic activity from single proteases and from those in crude cell lysates as well as clinical blood samples is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号