首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to identify and quantify the carotenoids and phenolic compounds from annatto seeds using high performance liquid chromatography coupled to diode array and mass spectrometer detectors (HPLC-DAD-MS/MS). Furthermore, using response surface methodology, an optimized procedure for simultaneous extraction of these compounds was established. In addition to bixin, known to be the main carotenoid in annatto seeds, hypolaetin and a caffeoyl acid derivative were identified as the main phenolic compounds. The optimized procedure involved 15 extractions using acetone:methanol:water (50:40:10, v/v/v) as solvent, a solid-liquid ratio of 1:9 (m/v) and an extraction time of 5 min. Validation data indicated that the HPLC method proposed provided good linearity, sensitivity, procedure accuracy, system precision and suggested its suitability for the simultaneous analysis of phenolic compounds and carotenoids in annatto seeds.  相似文献   

2.
Phenolic compounds are currently the most investigated class of functional components in quinoa. However, great variability in their content emerged, because of differences in sample intrinsic and extrinsic characteristics; processing-induced factors; as well as extraction procedures applied. This study aimed to optimize phenolic compound extraction conditions in black quinoa seeds by Response Surface Methodology. An ultrasound-assisted extraction was performed with two different mixtures; and the effect of time; temperature; and sample-to-solvent ratio on total phenolic content (TPC) was investigated. Data were fitted to a second-order polynomial model. Multiple regression analysis and analysis of variance were used to determine the fitness of the model and optimal conditions for TPC. Three-dimensional surface plots were generated from the mathematical models. TPC at optimal conditions was 280.25 ± 3.94 mg of Gallic Acid Equivalent (GAE) 100 g−1 dm upon extraction with aqueous methanol/acetone, and 236.37 ± 5.26 mg GAE 100 g−1 dm with aqueous ethanol mixture. The phenolic profile of extracts obtained at optimal conditions was also investigated by HPLC. The two extracting procedures did not show different specificities for phenolic compounds but differed in the extraction yield.  相似文献   

3.
In this study, ultrasound-assisted extraction of polyphenols from C. cicadae was optimized by response surface methodology (RSM). The optimized conditions were determined as extraction time of 39 min, liquid-to-solid ratio of 1:29 g/mL, extraction temperature of 69 °C and ethanol concentration of 55% with a yield of 21.9 mg gallic acid equivalent/g dry weight. Four resins were used for polyphenol purification. D101 resin had the highest ratio of adsorption and was further applied in polyphenol purification test. A total of 19 different phenolic compounds were identified by LC-MS, including 12 phenolic acids and 7 organic acids. In addition, C. cicadae polyphenols displayed higher antioxidant activity in vitro and anti-aging activity of C. elegans in vivo. Lastly, C. cicadae polyphenols showed the potential to protect DNA from oxidative damage. Overall, our results suggest that polyphenols from C. cicadae may be considered as novel sources of anti-oxidation, anti-aging and recommended as reagents to protect DNA from oxidative damage in food and pharmaceutical industries.  相似文献   

4.
Rapeseed plants, known for oil production, are also known to contain phenolic compounds such as phenolic acids and flavonoids, with potential antioxidant and anticancer activities. The separation and identification of 11 phenolic acids in rapeseed extracts (including leaves, flowers, Chinese seeds, Belgian seeds, and cake) by capillary electrophoresis were investigated. The results were compared with those obtained with high‐performance liquid chromatography and thin‐layer chromatography and showed that the capillary electrophoresis technique offers several advantages for the identification of phenolic compounds in various rapeseed extracts. The antioxidant activity of rapeseed extracts and reference compounds was evaluated using four different approaches, namely, 2,2′‐azinobis‐ (3‐ethylbenzohiazoline‐6‐sulfonic acid assay, free radical 2,2‐diphenyl‐1‐picrylhydrazyl assay, electron paramagnetic resonance spectroscopy and the measurement of the total polyphenol content. The contents of total polyphenols in the tested extracts were ranging between 5.4 and 21.1% m/m and ranked as follows: Chinese seeds ? Belgian seeds ? Flowers ? Cake ? Leaves.  相似文献   

5.
This study was conducted to optimise the extraction conditions of phenolic compounds to evaluate antioxidant extraction parameters and to identify the major free and bound phenolic compounds in olive seeds. The results obtained using methanol as an extraction solvent for olive seeds indicated that the optimised total phenolic content and antioxidant activity were obtained at an extraction time of 12 h, an extraction temperature of 70°C and an extraction cycle of three stages. The correlation coefficient between total phenolic compounds and antioxidant activities was positive (R2 = 0.83). The major finding is that the predominant phenolic compounds in olive seeds were present in free form. However, a small percentage of the bound phenolic compounds was found in olive seeds compared to that of the free phenolic compounds. This study recommends that olive seeds with optimised extraction conditions (i.e. optimised correlation between phenolic compound contents and antioxidant activities) can be used as potential food additive candidates in functional, nutraceutical and pharmaceutical industries.  相似文献   

6.
A simple and efficient microwave-assisted extraction of polyphenols from industrial apple pomace was developed and optimized by the maximization of the yield using response surface methodology. A Box-Behnken design was used to monitor the effect of microwave power, extraction time, ethanol concentration and ratio of solvent to raw material (g/mL) on the polyphenols yield. The results showed that the optimal conditions were as follows: microwave power 650.4?W, extraction time 53.7?s, ethanol concentration 62.1% and ratio of solvent to raw material 22.9:1. Validation tests indicated that the actual yield of polyphenols was 62.68±0.35?mg gallic acid equivalents per 100?g dry apple pomace with RSD=0.86% (n=5) under the optimal conditions, which was in good agreement with the predicted yield and higher than those of reflux and ultrasonic-assisted extraction methods. HPLC analysis indicated that the major polyphenols of apple pomace consisted of chlorogenic acid, caffeic acid, syrigin, procyanidin B2, (-)-epicatechin, cinnamic acid, coumaric acid, phlorizin and quercetin, of which procyanidin B2 had the highest content of 219.4?mg/kg.  相似文献   

7.
A microwave-assisted extraction technique was developed to optimize the extraction of phenolic compounds from grape seeds. The microwave power (300-150W) and time of extraction (20-200s) were varied during the optimization process. The polyphenol content of the resulting extracts were measured as mg of tannic acid equivalent per gram of crude extract (mg TAE/g of crude extract), using a Folin-Ciocalteau reagent. In general, neither the time nor the power had a significant effect on the overall % yield (average of 13.5%) and on the polyphenol content (392 mg TAE/g of crude extract) of the extracts. However, when the solvent polarity was changed by the addition of 10% water, the yield increased to 15.2% and the polyphenol content increased to 429 mg TAE/g of crude extract.  相似文献   

8.
The total phenolic content (Folin-Ciocalteu) of the leaves of Ficus benjamina and Ficus luschnathiana was evaluated and screened by HPLC-DAD. Ficus luschnathiana crude extract (CE) presented phenolic content higher than that of F. benjamina (149.92?±?3.65 versus 122.63?±?2.79?mg of GAE). Kaempferol (1.63?±?0.16?mg?g(-1) dry weight of CE) and chlorogenic acid (17.77?±?0.57?mg?g(-1) of butanolic fraction) were identified and quantified in F. benjamina, whereas rutin (1.39?±?0.20?mg?g(-1)), caffeic (1.14?±?0.13?mg?g(-1)) and chlorogenic (3.73?±?0.29?mg?g(-1)) acids were quantified in the CE of F. luschnathiana. Additionaly, rutin (15.55?±?1.92?mg?g(-1)) and quercetin (3.53?±?0.12?mg?g(-1)) were quantified in ethyl acetate and butanolic fractions, respectively. Antimycobacterial activity of CEs and fractions was evaluated against Mycobacterium smegmatis by broth microdilution method. Ethyl acetate fraction from F. benjamina and n-butanol fraction from F. luschnathiana displayed the highest inhibitory activity (MIC?=?312.50?μg?mL(-1) and 156.25?μg?mL(-1), respectively). Further studies are required to identify the compounds directly related to antimycobacterial activity.  相似文献   

9.
We describe herein an original approach for the efficient immortal ring-opening polymerization (iROP) of trimethylene carbonate (TMC) under mild conditions using dual-catalyst systems combining a discrete cationic metal complex with a tertiary amine. A series of new zinc and magnesium cationic complexes of the type [{NNO}M](+) [anion](-) ({NNO}(-) = 2,4-di-tert-butyl-6-{[(2'-dimethylaminoethyl)methylamino]methyl}phenolate; M = Zn, [anion](-) = [B(C(6)F(5))(4)](-) (2), [H(2)N-{B(C(6)F(5))(3)}(2)](-) (3), and [EtB(C(6)F(5))(3)](-) (4); M = Mg, [anion](-) = [H(2)N{B(C(6)F(5))(3)}(2)](-) (7)) have been prepared from the corresponding neutral compounds [{NNO}ZnEt] (1) and [{NNO}-Mg(nBu)] (6). Compounds 2-4 and 7 exist as free ion pairs, as revealed by (1)H, (13)C, (19)F, and (11) B?NMR spectroscopy in THF solution, and an X-ray crystallographic analysis of the bis(THF) adduct of compound 7, 7?(THF)(2). The neutral complexes 1 and 6, in combination with one equivalent or an excess of benzyl alcohol (BnOH), initiate the rapid iROP of TMC, in bulk or in toluene solution, at 45-60?°C (turnover frequency, TOF, up to 25-30,000?mol(TMC)?mol(Zn)?h(-1) for 1 and 220-240,000?mol(TMC)?mol(Mg)?h(-1) for 6), to afford H-PTMC-OBn with controlled macromolecular features. ROP reactions mediated by the cationic systems 2/BnOH and 7/BnOH proceeded much more slowly (TOF up to 500 and 3000?mol(TMC)?mol(Zn or Mg)?h(-1) at 110?°C) than those based on the parent neutral compounds 1/BnOH and 6/BnOH, respectively. Use of original dual organic/organometallic catalyst systems, obtained by adding 0.2-5?equiv of a tertiary amine such as NEt(3) to zinc cationic complexes [{NNO}Zn](+) [anion](-) (2-4), promoted high activities (TOF up to 18,300?mol(TMC)?mol(Zn)?h(-1) at 45?°C) giving H-PTMC-OBn with good control over the M(n) and M(w)/M(n) values. Variation of the nature of the anion in 2-4 did not significantly affect the performance of these catalyst systems. On the other hand, the dual magnesium-based catalyst system 7/NEt(3) proved to be poorly effective.  相似文献   

10.
Sanghuangporus baumii, is a widely used medicinal fungus. The polyphenols extracted from this fungus exert antioxidant, anti-inflammatory, and hypoglycemic effects. In this study, polyphenols from the fruiting bodies of S. baumii were obtained using the deep eutectic solvent (DES) extraction method. The factors affecting the extraction yield were investigated at different conditions. Based on the results from single-factor experiments, response surface methodology was used to optimize the extraction conditions. The scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was determined. The results showed that the DES system composed of choline chloride and malic acid had the best extraction yield (6.37 mg/g). The optimal extraction parameters for response surface methodology were as follows: 42 min, 58 ℃, 1:34 solid–liquid (mg/mL), and water content of 39%. Under these conditions, the yield of polyphenols was the highest (12.58 mg/g). At 0.30 mg/mL, the scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was 95.71%, 91.08%, and 85.52%, respectively. Thus, the method using DES was more effective than the conventional method of extracting phenolic compounds from the fruiting bodies of S. baumii. Moreover, the extracted polyphenols exhibited potent antioxidant activity.  相似文献   

11.
A solvent extraction procedure of freeze-dried aliquots followed by the analysis of phenolic compounds by reversed-phase high-performance liquid chromatography (RP-HPLC) with photodiode array detection (DAD) has been developed for the analysis of polyphenolic compounds in fruit juices. This methodology is focussed on the characterization of fruit juices, mainly for quality control purposes. The effects of experimental variables, such as solvent composition and volume and time and temperature on extraction, have been studied. A unique gradient program for the separation of several phenolic classes (hydroquinones, hydroxybenzoic acids, flavan-3-oles, hydroxycinnamic acids, coumarins, flavanones, flavones, dihydrochalcones and flavonols) has been optimized, using standards of 55 commercially available phenolic compounds present in fruits, as well as representative real extracts from fruit juices. All phenolic compounds showed a high repeatability within-day (n=5) and between days (n=3) in peak area (RSD<8%) and excellent stability of their retention times. High precision was also observed in calibration slopes (RSD<8%). Detection limits ranged between 0.005 and 0.03 microg/mL for the different detected polyphenols. Complete recoveries (98-100%) were obtained for the majority of the phenolic structures of all representative phenolic families present in fruits. The method was successfully employed to measure diverse phenolic families in juices from 18 different fruits and consequently could be used for evaluate the quality of fruit juices.  相似文献   

12.
The thermal stability (60°C, 80°C, 100°C), antioxidant activity, and ultraviolet C light (UV-C) stability of standard polyphenols solutions (catechin, gallic acid, and vanillic acid) and of vegetal extracts from spruce bark and grape seeds were investigated. Exposure of the standard solutions and vegetal extracts to high temperatures revealed that phenolic compounds were also relatively stable (degradations ranged from 15 % to 30 % after 4 h of exposure). The highest antioxidant activity was obtained for ascorbic acid and gallic acid followed by catechin and caffeic acid and the grape seeds. The results show that, after 3 h of UV-C exposure, approximately 40 % of vanillic acid, 50 % of gallic acid, and 83 % of catechin were removed. Similar degradation rates were observed for vegetal extracts, with the exception of the degradation of catechin (40 %) from grape seeds. In addition, the photo-oxidation of polyphenols in the presence of food constituents such as citric acid, ascorbic acid, sodium chloride, and sodium nitrate was assessed.  相似文献   

13.
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.  相似文献   

14.
The polyphenols were extracted from the unripe apple assisted by a highly efficient and simple method of the ultrasound. Response surface methodology was used to investigate the effects of processing parameters, including ultrasound power, extraction time, temperature, and ethanol concentration on total polyphenols yield and polyphenols composition was analyzed by HPLC. Antioxidant activity of the polyphenols was evaluated as 2, 2-diphenyl-1-picrylhydracyl scavenging activity and inhibition activity of lipid peroxidation. The results showed that 10-100 times higher total polyphenols yield was obtained from the unripe apple than those from the reported apple pomace. The optimum extraction conditions were ultrasonic power of 519.39 W, extraction time of 30 min, extraction temperature 50°C, ethanol concentration of 50% gave the total polyphenols yield of 13.26 ± 0.56 mg GAE/g. HPLC analysis indicated that (-)-epicatechin, procyanidin B2, chlorogenic acid, and procyanidin B1 were the predominant polyphenols in unripe apple, which contributed to the higher antioxidant activity to 2, 2-diphenyl-1-picrylhydracyl of unripe apple polyphenols than other apple polyphenols. The extracted polyphenols had higher ability to inhibit lipid peroxidation than butylated hydroxy toluene, which demonstrated that the unripe apple polyphenols have the potential to be used as a substitute of some synthetic antioxidants.  相似文献   

15.
The volatile constituents of the essential oil of wild Melissa officinalis L. obtained from the Kurdistan province of Iran were extracted by headspace/solid-phase micro-extraction and were analysed by gas chromatography and gas chromatography/mass spectrometry. Of a total of 14 compounds in the oil, 12 (85.7%) were identified. The main components were as follows: (E)-citral (37.2%), neral (23.9%) and citronellal (20.3%). Some physicochemical properties, such as the logarithm of calculated octanol-water partitioning coefficients (log?K (ow))(,) total biodegradation (TB (d) in mol?h(-1) and g?h(-1)), water solubility (S (w), mg?L(-1) at 25°C) and median lethal concentration 50 (LC(50)), were calculated for compounds 1-14 from M. officinalis L.  相似文献   

16.
Myrica rubra pomace accounts for 20% of the fruit’s weight that is not utilized when it is juiced. The pomace contains bioactive phenolic substances such as anthocyanins and flavonoids. To improve the utilization value of Myrica rubra pomace, an optimized extraction method for the residual polyphenols was developed using response surface methodology (RSM). The resulting extract was analyzed by high performance liquid chromatography (HPLC), and the in vitro hypoglycemic activity and antioxidant activity of the polyphenolic compounds obtained were also investigated. The optimum extraction conditions (yielding 24.37 mg·g−1 total polyphenols content) were: extraction temperature 60 °C, ultrasonic power 270 W, ethanol concentration 53%, extraction time 57 min, and solid to liquid ratio 1:34. Four polyphenolic compounds were identified in the pomace extract by HPLC: myricitrin, cyanidin-O-glucoside, hyperoside, and quercitrin. DPPH and hydroxyl radical scavenging tests showed that the Myrica rubra polyphenols extract had strong antioxidant abilities. It is evident that the residual polyphenols present in Myrica rubra pomace have strong hypoglycemic activity and the juiced fruits can be further exploited for medicinal purposes.  相似文献   

17.
Chemical profiling of Buddleja globosa was performed by high-performance liquid chromatography coupled to electrospray ionization (HPLC-DAD-ESI-IT/MS) and quadrupole time-of-flight high-resolution mass spectrometry (HPLC-ESI-QTOF/MS). The identification of 17 main phenolic compounds in B. globosa leaf extracts was achieved. Along with caffeoyl glucoside isomers, caffeoylshikimic acid and several verbascoside derivatives (β-hydroxyverbascoside and β-hydroxyisoverbascoside) were identified. Among flavonoid compounds, the presence of 6-hydroxyluteolin-7-O-glucoside, quercetin-3-O-glucoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside was confirmed. Campneoside I, forsythoside B, lipedoside A and forsythoside A were identified along with verbascoside, isoverbascoside, eukovoside and martynoside. The isolation of two bioactive phenolic compounds verbascoside and forsythoside B from Buddleja globosa (Buddlejaceae) was successfully achieved by centrifugal partition chromatography (CPC). Both compounds were obtained in one-step using optimized CPC methodology with the two-phase solvent system comprising ethyl acetate-n-butanol-ethanol-water (0.25:0.75:0.1:1, v/v). Additionally, eight Natural Deep Eutectic Solvents (NADESs) were tested for the extraction of polyphenols and compared with 80% methanol. The contents of verbascoside and luteolin 7-O-glucoside after extraction with 80% methanol were 26.165 and 3.206 mg/g, respectively. Among the NADESs tested in this study, proline- citric acid (1:1) and choline chloride-1, 2- propanediol (1:2) were the most promising solvents. With these NADES, extraction yields for verbascoside and luteolin 7-O-glucoside were 51.045 and 4.387 mg/g, respectively. Taken together, the results of this study confirm that CPC enabled the fast isolation of bioactive polyphenols from B. globosa. NADESs displayed higher extraction efficiency of phenolic and therefore could be used as an ecofriendly alternative to classic organic solvents.  相似文献   

18.
Taperebá (Spondias mombin L.) is a native species of the Brazilian Cerrado that has shown important characteristics such as a significant phenolic compound content and biological activities. The present study aimed to characterize the phenolic compound profile and antioxidant activity in taperebá peel extract, as well as microencapsulating the extract with chitosan and evaluating the stability of the microparticles. The evaluation of the profile of phenolic compounds was carried out by UPLC-MS/MS. The in vitro antioxidant activity was evaluated by DPPH and ABTS methods. The microparticles were obtained by spray drying and were submitted to a stability study under different temperatures. In general, the results showed a significant content of polyphenols and antioxidant activity. The results of UPLC-MS/MS demonstrated a significant content of polyphenols in taperebá peel, highlighting the high content of ellagic acid and quercetin compounds. There was significant retention of phenolic compounds when microencapsulated, demonstrating high retention at all evaluated temperatures. This study is the first to microencapsulate the extract of taperebá peel, in addition to identifying and quantifying some compounds in this fruit.  相似文献   

19.
Profound research has been done on the medicinal value of Brassica nigra (BN) seeds, and the leaves of the plant have been investigated in this study. The methanol extracts of the leaves were subjected to several in?vitro studies. The antioxidant activity of methanol extract was demonstrated with a wide range of concentration, 10-500?μg?mL(-1), and the antioxidant activity increased with the increase in concentration. Total phenol content was found to be 171.73?±?5.043 gallic acid equivalents and the total flavonoid content 7.45?±?0.0945 quercetin equivalents. Further quantification and identification of the compounds were done by HPTLC and GC-MS analyses. The predominant phenolic compounds determined by HPTLC were gallic acid, followed by quercetin, ferulic acid, caffeic acid and rutin. The free radical quenching property of BN leaf extract suggests the presence of bioactive natural compounds.  相似文献   

20.
Vegetables belonging to the Brassicaceae family are rich in polyphenols, flavonoids and glucosinolates, and their hydrolysis products, which may have antibacterial, antioxidant and anticancer properties. In the present study, phenolic composition, antibacterial activity and antioxidant capacity of selected Brassica vegetables, including York cabbage, Brussels sprouts, broccoli and white cabbage were evaluated after extraction with aqueous methanol. Results obtained showed that York cabbage extract had the highest total phenolic content, which was 33.5, followed by 23.6, 20.4 and 18.4 mg GAE/g of dried weight (dw) of the extracts for broccoli, Brussels sprouts and white cabbage, respectively. All the vegetable extracts had high flavonoid contents in the order of 21.7, 17.5, 15.4 and 8.75 mg QE/g of extract (dw) for York cabbage, broccoli, Brussels sprouts and white cabbage, respectively. HPLC-DAD analysis showed that different vegetables contain a mixture of distinct groups of phenolic compounds. All the extracts studied showed a rapid and concentration dependent antioxidant capacity in diverse antioxidant systems. The antibacterial activity was determined against Gram-positive and Gram-negative bacteria. York cabbage extract exhibited significantly higher antibacterial activity against Listeria monocytogenes (100%) and Salmonella abony (94.3%), being the most susceptible at a concentration of 2.8%, whereas broccoli, Brussels sprouts and white cabbage had moderate to weak activity against all the test organisms. Good correlation (r2 0.97) was found between total phenolic content obtained by spectrophotometric analysis and the sum of the individual polyphenols monitored by HPLC-DAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号