首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that the local temperature dependence of thermalized electron and phonon populations along metallic carbon nanotubes is the main reason behind the nonlinear transport characteristics in the high bias regime. Our model is based on the solution of the Boltzmann transport equation considering both optical and zone boundary phonon emission as well as absorption by charge carriers. It also assumes a local temperature along the nanotube, determined self-consistently with the heat transport equation. By using realistic transport parameters, our results not only reproduce experimental data for electronic transport but also provide a coherent interpretation of thermal breakdown under electric stress. In particular, electron and phonon thermalization prohibits ballistic transport in short nanotubes.  相似文献   

2.
The existence of pronounced negative differential conductance at room temperature in suspended metallic carbon nanotubes was recently proven. We investigate here the physical nature of this phenomenon, which is of considerable importance for high-frequency devices, such as oscillators working up to few hundreds of GHz. Besides previous explanations, we find a new physical mechanism that explains the negative differential conductivity at room temperature. The entire suspended metallic carbon nanotube behaves as a very large quantum well, the negative differential conductance occurring due to the depletion of carriers on high-energy resonant levels.  相似文献   

3.
The effects of impurities and local structural defects on the conductance of metallic carbon nanotubes are calculated using an ab initio pseudopotential method within the Landauer formalism. Substitutionally doped boron or nitrogen produces quasibound impurity states of a definite parity and reduces the conductance by a quantum unit (2e(2)/h) via resonant backscattering. These resonant states show strong similarity to acceptor or donor states in semiconductors. The Stone-Wales defect also produces quasibound states and exhibits quantized conductance reduction. In the case of a vacancy, the conductance shows a much more complex behavior than the prediction from the widely used pi-electron tight-binding model.  相似文献   

4.
Transport measurements through crossed metallic single-wall nanotubes are presented. We observe a zero-bias anomaly in one tube which is suppressed by a current flowing through the other nanotube. These results are compared with a Luttinger-liquid model which takes into account electrostatic tube-tube coupling together with crossing-induced backscattering processes. Explicit solution of a simplified model is able to describe qualitatively the observed experimental data with only one adjustable parameter.  相似文献   

5.
C(59)N magnetic fullerenes were formed inside single-wall carbon nanotubes by vacuum annealing functionalized C(59)N molecules encapsulated inside the tubes. A hindered, anisotropic rotation of C(59)N was deduced from the temperature dependence of the electron spin resonance spectra near room temperature. Shortening of the spin-lattice relaxation time T(1) of C(59)N indicates a reversible charge transfer toward the host nanotubes above approximately 350 K. Bound C(59)N-C(60) heterodimers are formed at lower temperatures when C(60) is coencapsulated with the functionalized C(59)N. In the 10-300 K range, T(1) of the heterodimer shows a relaxation dominated by the conduction electrons on the nanotubes.  相似文献   

6.
Using low-resistance electrical contacts, we have measured the intrinsic high-field transport properties of metallic single-wall carbon nanotubes. Individual nanotubes appear to be able to carry currents with a density exceeding 10(9) A/cm(2). As the bias voltage is increased, the conductance drops dramatically due to scattering of electrons. We show that the current-voltage characteristics can be explained by considering optical or zone-boundary phonon emission as the dominant scattering mechanism at high field.  相似文献   

7.
The rates of electron scattering via phonons in the armchair single-wall carbon nanotubes were calculated by using the improved scattering theory within the tight-binding approximation. Therefore, the problem connected with the discrepancy of the scattering rates calculated in the framework of the classical scattering theory and ones predicted by experimental data was clarified. Then these results were used for the solving of the kinetic Boltzmann equation to describe electron transport properties of the nanotubes. The equation was solved numerically by using both the finite difference approach and the Monte Carlo simulation procedure.  相似文献   

8.
Time-resolved carrier dynamics in single-wall carbon nanotubes is investigated by means of two-color pump-probe experiments. The recombination dynamics is monitored by probing the transient photobleaching observed on the interband transitions of the semiconducting tubes. This dynamics takes place on a 1 ps time scale which is 1 order of magnitude slower than in graphite. Transient photoinduced absorption is observed for nonresonant probing and is interpreted as a global redshift of the pi-plasmon resonance. We show that the opening of the band gap in semiconducting carbon nanotubes determines the nonlinear response dynamics over the whole visible and near-infrared spectrum.  相似文献   

9.
Using a model of conducting cylinder with a few number of impurities on its surface, we investigate the effects of magnetic impurity scattering on the conductance of metallic single-wall carbon nanotubes. The nonlinear part of conductance, which is due to the interaction of conduction electrons with impurities, is obtained. The signature of Kondo anomaly is found in the nonlinear conductance and it is shown that its amplitude strongly depends on the position of impurities and diameter of nanotube.  相似文献   

10.
We investigate the coupling between individual tubes in a rope of single-wall carbon nanotubes using four probe resistance measurements. By introducing defects through the controlled sputtering of the rope we generate a strong nonmonotonic temperature dependence of the four terminal resistance. This behavior reflects the interplay between localization in the intentionally damaged tubes and coupling to undamaged tubes in the same rope. Using a simple model we obtain the coherence length and the coupling resistance. The coupling mechanism is argued to involve direct tunneling between tubes.  相似文献   

11.
We have studied the resistance of single-wall carbon nanotubes measured in a four-point configuration with noninvasive voltage electrodes. The voltage drop is detected using multiwalled carbon nanotubes while the current is injected through nanofabricated Au electrodes. The resistance at room temperature is shown to be linear with the length as expected for a classical resistor. This changes at cryogenic temperature; the four-point resistance then depends on the resistance at the Au-tube interfaces and can even become negative due to quantum-interference effects.  相似文献   

12.
13.
We demonstrate an optically active nanotube-hybrid material by functionalizing single-wall nanotubes with an azo-based chromophore. Upon UV illumination, the conjugated chromophore undergoes a cis-trans isomerization leading to a charge redistribution near the nanotube. This charge redistribution changes the local electrostatic environment, shifting the threshold voltage and increasing the conductivity of the nanotube transistor. For a approximately 1%-2% coverage, we measure a shift in the threshold voltage of up to 1.2 V. Further, the conductance change is reversible and repeatable over long periods of time, indicating that the chromophore-functionalized nanotubes are useful for integrated nanophotodetectors.  相似文献   

14.
The dynamic conductance of carbon nanotubes was investigated using the nonequilibrium Green's function formalism within the context of a tight-binding model. Specifically, we have studied the ac response of tubes of different helicities, both with and without defects, and an electronic heterojunction. Because of the induced displacement currents, the dynamic conductance of the nanotubes differs significantly from the dc conductance displaying both capacitive and inductive responses. The important role of photon-assisted transport through nanotubes is revealed and its implications for experiments discussed.  相似文献   

15.
The vibrational density of states of single-wall carbon nanotubes (SWNT) was obtained from inelastic neutron scattering data from 0 to 225 meV. The spectrum is similar to that of graphite above 40 meV, while intratube features are clearly observed at 22 and 36 meV. An unusual energy dependence below 10 meV is assigned to contributions from intertube modes in the 2D triangular lattice of SWNT bundles, and from intertube coupling to intratube excitations. Good agreement between experiment and a calculated density of states for the SWNT lattice is found over the entire energy range.  相似文献   

16.
Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e(2)/h, the quantum of conductance for a single (nondegenerate) mode. Plateau structure is investigated as a function of bias voltage, temperature, and magnetic field. We speculate on the origin of this surprising quantization, which appears to lack band and spin degeneracy.  相似文献   

17.
采用金刚石对顶砧装置对直径分布在1.3 nm左右的单壁碳纳米管进行了高压拉曼光谱研究.实验结果表明随压力的增加碳管的截面形状发生了由圆到椭圆再到扁平的变化,这和我们之前的研究结果一致.从31 GPa卸压至常压后碳管的结构得到了较好的保持,这个压力值明显高于传统的Sp2键结构的碳材料所能稳定存在的压力范围(20 GPa以...  相似文献   

18.
Polarized Raman spectra were obtained from a rope of aligned semiconducting single-wall nanotubes (SWNTs) in the vicinity of the D band and the G band. Based on group theory analysis and related theoretical predictions, the G-band profile was deconvolved into four intrinsic SWNT components with the following symmetry assignments: 1549 cm(-1) [E2(E(2g))], 1567 cm(-1) [A(A(1g))+E1(E(1g))], 1590 cm(-1) [A(A(1g))+E1(E(1g))] and 1607 cm(-1) [E2(E(2g))]. The frequency shifts of the tangential G modes from the 2D graphitelike E(2g(2)) frequency are discussed in terms of the nanotube geometry.  相似文献   

19.
A review of the electronic dipole transitions in graphite and single-wall carbon nanotubes is presented. Because of its singular electronic structure, the optical absorption matrix element as a function of wave vector has a node in the two-dimensional Brillouin zone of graphite, which depends linearly on the optical polarization direction. In the case of the single-wall carbon nanotubes, the dipole selection rule and the van Hove singularity in the joint density of states will give a characteristic behavior, which is observed by luminescence and resonance Raman spectroscopy. PACS 78.30.Na; 78.20.Bh; 78.66.Tr; 63.22.+m; 36.20.Kd; 36.20.Ng  相似文献   

20.
We present classical molecular dynamics simulations demonstrating that single-wall carbon nanotube (SWNT) bundles collapse under hydrostatic pressure. The collapse pressures obtained as a function of nanotube diameter are in excellent quantitative agreement with new data presented here for small diameter (d approximately 0.8 nm) SWNTs, and the majority of previously published results, although there remain some unreconciled contradictions in the literature. The collapse pressure is found to be independent of the nanotube chirality, and a lower limit on the largest SWNT that remains inflated at atmospheric pressure is established (d>4.16 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号