首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With a view of finding a route toward microstructural stability in alloys, we numerically study the impact of elastic inhomogeneities on the growth of inclusions in multiphase systems. We show that growth can proceed either continuously at rough interfaces, or in a layer-by-layer fashion following an elastically induced kinetic faceting process. In the former case, the chemical potential of the inclusions is a smooth function of size, while in the latter case, elasticity increases the barrier for nucleation of new terraces on the facets, leading to an oscillatory behavior of the chemical potential and hence a strong resistance against coarsening, opening up the possibility to stabilize the structure.  相似文献   

2.
In this paper we analyze the fluctuations of the in-plane interfacial excess fluxes in multiphase systems, in the context of the extended irreversible thermodynamics formalism. We derive expressions for the time correlation functions of the surface extra stress tensor, the surface mass flux vector, and the surface energy flux vector, and use these expressions to derive Green–Kubo relations for the surface shear viscosity, the surface dilatational viscosity, the surface diffusion coefficient, and the surface thermal conductivity. These Green-Kubo relations can be used to compute these excess transport coefficients using for example molecular dynamics simulations.  相似文献   

3.
Leonard M.C. Sagis 《Physica A》2012,391(4):979-990
In this paper, we derive constitutive equations for the surface excess fluxes in multiphase systems, in the context of an extended rational thermodynamics formalism. This formalism allows us to derive Maxwell-Cattaneo type constitutive laws for the surface extra stress tensor, the surface thermal energy flux vector, and the surface mass flux vector, which incorporate a direct coupling to their corresponding bulk fluxes in the adjacent bulk phases. These constitutive laws also incorporate contributions to the time evolution of the surface excess fluxes from spatial inhomogeneities in these flux fields. These phenomenological equations can be used to model the dynamic behavior of complex viscoelastic interfaces in multiphase systems, in the small deformation limit.  相似文献   

4.
Zene Horii   《Physica A》2005,350(2-4):349-378
To establish mass transport theory on nonlinear lattices, we formulate the Korteweg–deVries (KdV) equation and the Burgers equation using the flow variable representation so as to facilitate comparison with the Boltzmann equation and with the Cahn–Hilliard equation in classical statistical mechanics. We also study Toda lattice microdynamics using the Flaschka representation, and compare with the Liouville equation. Like the linear diffusion equation, the Boltzmann equation and the Liouville equation are to be solved for a distribution function, which is intrinsically probabilistic. Transport theory in linear systems is governed by the isotropic motions of the kinetic equations. In contrast, the KdV perturbation equation derived from the Toda lattice microdynamics expresses hydrodynamic mass transport. The KdV equation in hydrodynamics and the Burgers equation in thermodynamics do not involve a probability distribution function. The nonlinear lattices do not retain isotropy of the mass transport equations. In consequence, it is proposed that in the presence of hydrodynamic flows to the left, KdV wave propagation proceeds to the right. This basic property of the KdV system is extended to thermodynamics in the Burgers system. These features arise because linear systems are driven towards an equilibrium by molecular collisions, whereas the inhomogeneities of the nonlinear lattices are generated by the potential energy of interaction. Diffusion as expressed by the Burgers equation is governed not only by a chemical potential, but also by the Toda lattice potential energy.  相似文献   

5.
A modified phase-field model for quantitative simulations of low-speed phase transitions in multiphase systems is proposed, which takes into account the difference between thermodynamic factors in all the phases. The presented model is based on the quantitative phase-field concept developed by Steinbach et al. [I. Steinbach, F. Pezolla, B. Nestler, M. Seeelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, A phase field concept for multiphase systems, Physica D 94 (1996) 135] for multiphase systems allowing to consider the multiphase transition as a superposition of pairwise interactions between two phases. We complete this approach and develop a model, which uses parameters derived from chemical free energy functions of individual phases evaluated from experimental data by the CALPHAD method Lukas et al. (2007) [17]. Because the thermodynamic factors are different in various phases we need to evaluate a special form of total chemical free energy function of a multiphase mixture and use it in the phase-field model. It is shown, that for the developed model the thin-interface asymptotic and the anti-trapping term developed previously for the solidification of pure substances can be applied. The model is verified by an example of the Al-Ni system whose peritectic structural morphology during the directional solidification is investigated. The suggested model can be also extended to multicomponent systems.  相似文献   

6.
We investigate the stability regions of the thin-shells obtained by gluing the exterior Schwarzschild vacuum with two distinct classes of Ellis wormholes, one with zero and the other with nonzero total mass. Using the new concepts of thin-shell “mass” and of “external force” discovered recently by Garcia, Lobo and Visser, we shall apply their method to the explicit cases where some of the energy conditions in the bulk (on two sides) are violated. The stability regions are analyzed and the energetics is briefly discussed. Remarkably, we find that the stability zones are quite similar although the classes of Ellis wormholes are different. By the present examples, we confirm that the stability zones indicated by the force constraint (involving Φ and its derivatives) are more complete but restrictive than those from the mass constraint (not involving Φ).  相似文献   

7.
The paper presents mathematical models and calculation methods for solving particular research problems related to the thermodynamic characteristics of multicomponent and multiphase mixtures. The special features of chemical and phase equilibria in such mixtures are considered in the ideal gas approximation and taking nonideality into account. The conditions of equilibrium phase stability are studied for multiphase systems. The results of calculations of characteristic phase diagrams and binodal and spinodal are given for model systems with a fixed chemical composition, and a new interpretation of the mathematical model for localizing the critical point of a multicomponent mixture with a given composition is presented. A new interpretation of the well-known classic homotopy method is suggested for solving complex nonlinear systems of equations. Some anomalies of phase portraits and critical curves that are necessary to take into account in selecting (planning) experimental conditions and calculating chemical processes and reaction parameters are considered separately. The possibility of calculating thermodynamic and thermophysical properties (entropy, enthalpy, heat capacity, heat effects of reactions, and adiabatic heating) is demonstrated for the example of particular multicomponent nonideal mixtures. The conclusion is drawn that cubic equations of state can be used for predicting the deviations of these properties from the ideal gas state and their anomalies in the vicinity of the critical points of mixtures.  相似文献   

8.
Metallic alloy clusters at equilibrium display an inhomogeneous stress field which may contribute to the chemical ordering and segregation properties. We use the example of cuboctahedral and icosahedral Au-Pd clusters with the same size to compare these properties in systems displaying moderately and highly inhomogeneous stress fields. Metropolis Monte Carlo simulations in the semi-grand canonical ensemble are used with an empirical potential to predict equilibrium configurations. Pressure maps are used to estimate stress on each atom. It is found that when the stress field is moderately inhomogeneous, ordering is dominantly driven by thermodynamic forces. In icosahedral clusters, ordering is found to be the consequence of a balance where thermodynamic forces and mechanical stress may conflict or reinforce each other. Order-disorder transitions are smoother in the systems with higher stress inhomogeneity and it is conjectured that, in icosahedral clusters, disorder may nucleate in the central core.  相似文献   

9.
A probabilistic model describing tracer transport in multiphase spatially inhomogeneous transport (plug-flow) systems is presented. The properties of the trajectories are completely described by a two-component Markov process with absorbing boundaries. The first component is continuous, the second discrete. Infinitesimal conditions are given. Probabilities associated with the process are derived.  相似文献   

10.
We present a formal derivation of a drift-diffusion model for stationary electron transport in graphene, in presence of sharp potential profiles, such as barriers and steps. Assuming the electric potential to have steep variations within a strip of vanishing width on a macroscopic scale, such strip is viewed as a quantum interface that couples the classical regions at its left and right sides. In the two classical regions, where the potential is assumed to be smooth, electron and hole transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of a Hilbert expansion and a boundary layer analysis, and consists of drift-diffusion equations in the classical regions, coupled by quantum diffusive transmission conditions through the interface. The boundary layer analysis leads to the discussion of a four-fold Milne (half-space, half-range) transport problem.  相似文献   

11.
A theory of transport of long chain polymer molecules through carbon nanotube (CNT) channels is developed using the Fokker-Planck equation and direct molecular dynamics simulations. The mean transport or translocation time tau is found to depend on the chemical potential energy, the entropy, and the diffusion coefficient. A power law dependence tau approximately N2 is found, where N is the number of monomers in a molecule. For 10(5)-unit long polyethylene molecules, tau is estimated to be approximately 1 micros. The diffusion coefficient of long polymer molecules inside CNTs, like that of short ones, is found to be a few orders of magnitude larger than in ordinary silicate based zeolite systems.  相似文献   

12.
In recent years there has been increasing interest in applying magnetic resonance (MR) techniques in areas of engineering and chemical technology. The science that underpins many of these applications is the physics and chemistry of transport and reaction processes in porous materials. Key to the exploitation of MR methods will be our ability to demonstrate that MR yields information that cannot be obtained using conventional measurement techniques in engineering research. This article describes two case studies that highlight the power of MR to give new insights to chemical engineers. First, we demonstrate the application of MR techniques to explore both mass transfer and chemical conversion in situ within a fixed bed of catalyst, and we then use these data to identify the rate-controlling step of the chemical conversion. Second, we implement a rapid imaging technique to study the stability of the gas-liquid distribution in the low- and high-interaction two-phase flow regimes in a trickle-bed reactor.  相似文献   

13.
A two-dimensional square grain model has been applied to simulate simultaneously the diffusion process and relaxation of the dc conduction of polycrystalline oxide materials due to a sudden change of the oxygen partial pressure of the surrounding gas phase. The numerical calculations are performed by employing the finite element approach. The grains are squares of equal side length (average grain size) and the grain boundaries may consist of thin slabs of uniform thickness. An additional (space charge) layer adjacent to the grain boundary cores (thin slabs) either blocking (depletion layer) or highly conductive for electronic charge carriers may surround the grains. The electronic transport number of the mixed ionic-electronic conducting oxide ceramics may be close to unity (predominant electronic conduction). If the chemical diffusion coefficient of the neutral mobile component (oxygen) of the grain boundary core regions is assumed to be higher by many orders of magnitude than that in the bulk, the simulated relaxation curves for mass transport (diffusion) and dc conduction can deviate remarkably from each other. Deviations between the relaxation of mass transport and dc conduction are found in the case of considerably different electronic conductivities of grain boundary core regions, space charge layers, and bulk. On the contrary, the relaxation curves of mass transport and electronic conductivity are in perfect coincidence, when either effective medium diffusion occurs or the effective conductivity is unaffected by the individual conductivities of core regions and possible space charge layers, i.e. the grain boundary resistivity is negligible.  相似文献   

14.
Water transport is critical to the successful implementation of polymer electrolyte fuel cells (PEFC), especially in long-term and dynamic operation in automotives. Liquid water appears in the fuel cells not only from the water generated at the cathode catalyst layer but also as a result of condensation of water vapor from the humidified gases. In this study, we report a simple approach to prepare a superhydrophobic gas diffusion layer by chemical vapor deposition of polydimethylsiloxane without significant change in pore size of gas diffusion layer unlike other approach adding hydrophobic agent such as polytetrafluoroethylene. A superhydrophobic coating on the GDL can be obtained, leading to exceptionally enhanced power performance and stability of PEFC especially at a high current where water transport becomes more critical.  相似文献   

15.
We present a stable numerical scheme for modelling multiphase flow in porous media, where the characteristic size of the flow domain is of the order of microns to millimetres. The numerical method is developed for efficient modelling of multiphase flow in porous media with complex interface motion and irregular solid boundaries. The Navier–Stokes equations are discretised using a finite volume approach, while the volume-of-fluid method is used to capture the location of interfaces. Capillary forces are computed using a semi-sharp surface force model, in which the transition area for capillary pressure is effectively limited to one grid block. This new formulation along with two new filtering methods, developed for correcting capillary forces, permits simulations at very low capillary numbers and avoids non-physical velocities. Capillary forces are implemented using a semi-implicit formulation, which allows larger time step sizes at low capillary numbers. We verify the accuracy and stability of the numerical method on several test cases, which indicate the potential of the method to predict multiphase flow processes.  相似文献   

16.
侯海燕  姚慧  李志坚  聂一行 《物理学报》2018,67(8):86801-086801
研究了基于硅烯的静电势超晶格、铁磁超晶格、反铁磁超晶格中谷极化、自旋极化以及赝自旋极化的输运性质,分析了铁磁交换场、反铁磁交换场以及化学势对输运性质的影响,讨论了电场对谷极化、自旋极化以及赝自旋极化的调控作用.结果表明:当3种超晶格的晶格数达到10以上时,在硅烯超晶格中很容易实现100%的谷极化、自旋极化和赝自旋极化,而且通过调节超晶格上的外加电场可以使极化方向发生翻转,从而在硅烯超晶格中实现外电场对谷自由度、自旋自由度以及赝自旋自由度的操控.  相似文献   

17.
In this paper, a Lagrangian particle method is proposed for the simulation of multiphase flows with surfactant. The model is based on the multiphase smoothed particle hydrodynamics (SPH) framework of Hu and Adams (2006) [1]. Surface-active agents (surfactants) are incorporated into our method by a scalar quantity describing the local concentration of molecules in the bulk phase and on the interface. The surfactant dynamics are written in conservative form, thus global mass of surfactant is conserved exactly. The transport model of the surfactant accounts for advection and diffusion. Within our method, we can simulate insoluble surfactant on an arbitrary interface geometry as well as interfacial transport such as adsorption or desorption. The flow-field dynamics and the surfactant dynamics are coupled through a constitutive equation, which relates the local surfactant concentration to the local surface-tension coefficient. Hence, the surface-tension model includes capillary and Marangoni-forces. The present numerical method is validated by comparison with analytic solutions for diffusion and for surfactant dynamics. More complex simulations of an oscillating bubble, the bubble deformation in a shear flow, and of a Marangoni-force driven bubble show the capabilities of our method to simulate interfacial flows with surfactants.  相似文献   

18.
Dephasing effects in electron transport in molecular systems connected between contacts average out the quantum characteristics of the system, forming a bridge to the classical behavior as the size of the system increases. For the evaluation of the conductance of the molecular systems which have sizes within this boundary domain, it is necessary to include these dephasing effects. These effects can be calculated by using the D’Amato-Pastawski model. However, this method is computationally demanding for large molecular systems since transmission functions for all pairs of atomic orbitals need to be calculated. To overcome this difficulty, we develop an efficient coarse-grained model for the calculation of conductance of molecular junctions including decoherence. By analyzing the relationship between chemical potential and inter-molecular coupling, we find that the chemical potential drops stepwise in the systems with weaker inter-unit coupling. Using this property, an efficient coarse-grained algorithm which can reduce computational costs considerably without losing the accuracy is derived and applied to one-dimensional organic systems as a demonstration. This model can be used for the study of the orientation dependence of conductivity in various phases (amorphous, crystals, and polymers) of large molecular systems such as organic semiconducting materials.  相似文献   

19.
A vertical stratification of a light and hot fluid over a heavy and cold one is expected to be stable with regard to buoyancy-driven convection. Here we show that chemical reactions can trigger convection around chemical fronts even in cases where concentration and heat both contribute to a stable density stratification. The balance between intrinsic thermal and solutal density gradients initiated by a spatially localized reaction zone and double diffusive mechanisms are at the origin of a new convective instability, the mechanism of which is explained by a displaced particle argument. Linear stability analysis of a reaction-diffusion-convection model confirmed by nonlinear simulations delimits the instability region in the parameter space spanned by the thermal and solutal Rayleigh numbers. Experimental systems in which to test our theoretical predictions are proposed.  相似文献   

20.
The running of the QCD coupling in the effective mass causes thermodynamic inconsistency problem in the conventional quasiparticle model. We provide a novel treatment which removes the inconsistency by an effective bag constant. The chemical potential dependence of the renormalization subtraction point is constrained by the Cauchy condition in the chemical potential space. The stability and microscopic properties of strange quark matter are then studied within the completely self-consistent quasiparticle model, and the obtained equation of state of quark matter is applied to the investigation of strange stars. It is found that our improved model can describe well compact stars with mass about two times the solar mass, which indicates that such massive compact stars could be strange stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号