首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
李娜  徐丹  鲍迪  马金玲  张新波 《催化学报》2016,(7):1172-1179
随着全球环保意识的加强,开发具有环保可持续且高能量密度的能源逐渐成为人们关注的焦点.近年来,金属-空气电池凭借其高的能量密度作为能源存储器件已经引起了人们的广泛关注.最重要的是,此类电池的反应物为空气中的氧气,并不需要辅助设备对其储存,使得无论在质量和体积方面均优于其他二次电池.尤其锂空气电池凭借其高的理论比容量11140 Wh/kg,比现有锂离子电池高出1–2个数量级,且有质量轻便等优势,成为近几年的研究热点.然而,考虑到金属锂资源的短缺和金属钠与其具有相似的物理化学性质,因此呼吁用金属钠取代金属锂,钠-空气电池作为未来的储能器件引起了广大研究者的兴趣.但是,钠空气电池目前的实际应用仍存在很多问题:充放电过程中产生过高的过电位,循环寿命低,电解液不稳定,粘结剂的不稳定性,空气正极的结构以及外界操作环境条件等.解决这些问题的一种重要途径就是寻找合适的催化剂和设计合理的电极结构.催化剂的加入既可以增强其氧还原(ORR)及氧析出(OER)活性又可以通过调控电极的结构,为氧气、电子和离子的运输提供更多的通道,从而加速 ORR和 OER进程.基于粘结剂的不稳定性,需设计一体化的正极材料.由于碳纤维布作为柔性集流体具有高的机械强度和电化学稳定性好的优点,因此本文使用水热处理和热处理两步法在碳纤维布上原位生长 Co3O4纳米线(Co3O4 NWs),制备柔性、无粘结剂的一体化正极材料(COCT)用于钠空气电池.本实验以硝酸钴为主盐,尿素为矿化剂,氟化铵为络合剂,通过120°C热处理5 h在碳纤维布上生长 Co3O4 NWs的前驱体,然后经过400°C热处理2 h得到一体化柔性电极材料并用于钠空气电池,该材料表现出优异的电化学性能:充放电过程产生较低的过电位;高的放电比容量4687 mAh/g,碳纤维布作为正极放电容量是1113.7 mAh/g;能稳定循环62圈(碳纤维布作为正极循环16圈).这些优异的性能可归功于 Co3O4 NWs高的催化性能和多孔性效应:(1)由于 Co3O4 NWs紧密地附着在碳纤维布表面,形成了快速的电子传导通道,因而具有优异的电子传导性;(2) Co3O4 NWs之间的空隙以及多孔结构增加了反应的活性面积和活性位点,这种结构有利于氧气和离子的运输以及电解液的扩散,从而加速 ORR和 OER进程;(3) COCT电极结构能为放电产物和反应物提供更多的存储位置,从而提高了放电容量和倍率性能.结果证实,钠空气电池的放电产物是过氧化钠和超氧化钠的混合物.加入催化剂后,放电产物的形貌发生了变化:当碳纤维布作为正极材料时,放电产物的形貌是片状的; COCT电极作为正极材料时,放电产物沿着 Co3O4 NWs生长.这种柔性一体化正极材料的应用,为柔性钠空气电池器件的发展起到了巨大的推动作用.  相似文献   

2.
LiCoO2对LiMn2-xMxO4正极材料的混合改性研究   总被引:4,自引:0,他引:4  
采用机械混合层状LiCoO2和经过多元掺杂改性后尖晶石型LiMn2-xMxO4(M=Co Cr La,x=nCo nCr nLa,且0相似文献   

3.
介绍了LiNi1/3Co1/3Mn1/3O2的晶体结构及电化学反应特性,并从LiNi1/3Co1/3Mn1/3O2的制备方法、离子掺杂及表面包覆等方面对其研究现状进行了综述。LiNi1/3Co1/3Mn1/3O2相对于LiCoO2而言具有较高的热稳定性、放电比容量及循环性能,是一种较理想的锂离子电池正极材料,但是其高温及大电流环境下的循环及倍率性能仍然有待改进。  相似文献   

4.
随着全球环保意识的加强,开发具有环保可持续且高能量密度的能源逐渐成为人们关注的焦点.近年来,金属-空气电池凭借其高的能量密度作为能源存储器件已经引起了人们的广泛关注.最重要的是,此类电池的反应物为空气中的氧气,并不需要辅助设备对其储存,使得无论在质量和体积方面均优于其他二次电池.尤其锂空气电池凭借其高的理论比容量11140 Wh/kg,比现有锂离子电池高出1–2个数量级,且有质量轻便等优势,成为近几年的研究热点.然而,考虑到金属锂资源的短缺和金属钠与其具有相似的物理化学性质,因此呼吁用金属钠取代金属锂,钠-空气电池作为未来的储能器件引起了广大研究者的兴趣.但是,钠空气电池目前的实际应用仍存在很多问题:充放电过程中产生过高的过电位,循环寿命低,电解液不稳定,粘结剂的不稳定性,空气正极的结构以及外界操作环境条件等.解决这些问题的一种重要途径就是寻找合适的催化剂和设计合理的电极结构.催化剂的加入既可以增强其氧还原(ORR)及氧析出(OER)活性又可以通过调控电极的结构,为氧气、电子和离子的运输提供更多的通道,从而加速ORR和OER进程.基于粘结剂的不稳定性,需设计一体化的正极材料.由于碳纤维布作为柔性集流体具有高的机械强度和电化学稳定性好的优点,因此本文使用水热处理和热处理两步法在碳纤维布上原位生长Co_3O_4纳米线(Co_3O_4 NWs),制备柔性、无粘结剂的一体化正极材料(COCT)用于钠空气电池.本实验以硝酸钴为主盐,尿素为矿化剂,氟化铵为络合剂,通过120°C热处理5 h在碳纤维布上生长Co_3O_4NWs的前驱体,然后经过400°C热处理2 h得到一体化柔性电极材料并用于钠空气电池,该材料表现出优异的电化学性能:充放电过程产生较低的过电位;高的放电比容量4687 m Ah/g,碳纤维布作为正极放电容量是1113.7 m Ah/g;能稳定循环62圈(碳纤维布作为正极循环16圈).这些优异的性能可归功于Co_3O_4 NWs高的催化性能和多孔性效应:(1)由于Co_3O_4 NWs紧密地附着在碳纤维布表面,形成了快速的电子传导通道,因而具有优异的电子传导性;(2)Co_3O_4 NWs之间的空隙以及多孔结构增加了反应的活性面积和活性位点,这种结构有利于氧气和离子的运输以及电解液的扩散,从而加速ORR和OER进程;(3)COCT电极结构能为放电产物和反应物提供更多的存储位置,从而提高了放电容量和倍率性能.结果证实,钠空气电池的放电产物是过氧化钠和超氧化钠的混合物.加入催化剂后,放电产物的形貌发生了变化:当碳纤维布作为正极材料时,放电产物的形貌是片状的;COCT电极作为正极材料时,放电产物沿着Co_3O_4 NWs生长.这种柔性一体化正极材料的应用,为柔性钠空气电池器件的发展起到了巨大的推动作用.  相似文献   

5.
采用高温固相反应法合成了锂离子电池正极材料LiCoO2, 用粉末X射线衍射(XRD)和扫描电子显微镜(SEM)等技术对材料的形貌与结构进行分析. 平面反射和透射X射线粉末衍射数据表明, 目前商品LiCoO2样品XRD图谱的(104)和(003)衍射峰强度比(I(104)/I(003))主要反映了LiCoO2晶体c轴方向的择优取向, 而不是Li、Co原子的占位有序程度. I(104)/I(003)比值越小, 晶体择优取向度越高. 晶体无择优取向LiCoO2粉末材料的衍射峰强度比I(104)/I(003) 应为95%左右. 因此, 不能用I(104)/I(003) 的比值大小作为实际LiCoO2材料晶体内Li、Co 原子排列是否有序的主要证据. 澄清了长期有争议的关于锂离子二次电池正极材料LiCoO2的X射线衍射峰强度比问题.  相似文献   

6.
锂-空气电池被认为是最具潜力的新一代化学电源体系之一,具有能量密度高、质量轻便、可逆性高、环境污染小等优点. 但其电极上缓慢的氧还原(ORR)与氧析出(OER)动力学过程导致了能量效率降低、过电位高、循环性能差等问题,制约了锂-空气电池的发展. 双效正极催化剂的设计与开发是解决上述问题的重要途径之一. 作者通过总结近几年锂-空气电池正极催化剂的研究进展,并结合其课题组自身的工作,综述了锂-空气电池正极催化剂表界面调控及构效关系研究方面的最新进展,并展望了未来关于锂-空气电池研究的切入点,对设计、开发高效锂-空电池催化剂具有重要指导意义.  相似文献   

7.
微波法合成锂离子材料LiCoO2的研究   总被引:2,自引:2,他引:2  
以氧化钴和氢氧化锂为原料,采用微波技术合成锂离子电池正极材料LiCoO2.主要考查的微波合成条件有反应时间、输出功率与反应温度.采用XRD、SEM方法和电化学测试手段研究了产物的结构与性能.研究结果表明微波合成法可以制备层状结构、电化学性能稳定的LiCoO2材料.在充放电实验中,电池的首次放电容量达到140 mAh·g-1.与传统的合成方法相比,微波合成技术具有节省能源、提高效率和环境友好的特点.  相似文献   

8.
通过自发交换法使Au与非水性锂空气电池中的泡沫镍集流体发生反应,实现了金纳米层催化剂的原位负载.将其作为非水性锂空气电池正极,研究了不同气氛(纯氧、大气和模拟大气)下电池的电化学性能.结果表明,Au纳米层催化剂对氧还原反应/氧逸出反应起到了双功能催化作用,使得氧气电极在不同气氛下的首次放电容量与电压均显著提升,容量分别提升至9169,1604和1853 m A·h/gcarbon;同时氧气电极在模拟大气下的充电过电位降低,能量效率提高,循环性能得到一定提升.  相似文献   

9.
随着便携式电子设备的日益普及,人们对支撑这些设备运行的后备电源提出了越来越高的要求.锂离子电池与传统的铅酸和镍镉电池相比具有更大的电动势、更大的比能量(120~150 Wh/kg,是常用的Ni-Cd电池的2~3倍)以及较好的充放循环性能,因此成为目前使用较多的高性能便携能源设备.作为锂离子电池的重要组成部分,正极材料一直是人们重点研究的一个内容,目前应用较广的是LiCoO2,它具有放电电压高、放电平稳、高倍率放电性能好、比能量高、循环性好和生产工艺简单等优点,但由于Co的毒性大、储量低导致这种材料不环保、价格高,并且由于Co4+的高氧化性使LiCoO2只能获得理论值一半的容量,并存在一定的过充电安全隐患,因此人们一直在寻找更好的正极材料.1997年Padhi等人[1]首次报道了具有橄榄石结构的LiFePO4可以作为锂离子电池正极材料,这种材料具有较平坦的3.4 V电压平台、较高的比容量(大于160 mAh/g)、所含元素储量丰富、绿色环保、易于制备和安全性好等优点,被认为是有望替代LiCoO2的正极材料,成为近年来这一研究领域的热点.为了了解LiFePO4的电化学反应机理,Padhi[1]和Takahashi[2]等人用XRD研究了LiFePO4化学脱锂和电化学脱锂后的结构变化,表明Li+的脱嵌过程中LiFePO4和PO4两相共存.Burba等人[3]也使用FTIR和Raman光谱研究了LiFePO4化学脱锂后的结构变化,表明分子光谱是研究LiFePO4结构变化的很好手段,为了更深入理解LiFePO4电化学反应过程中的变化, 本文使用FTIR对LiFePO4在充放电过程中不同充放电阶段的结构变化进行了研究.  相似文献   

10.
采用微波合成法制备了含掺杂P,Al和La元素的正极材料LiCoO2,确定了工艺条件,包括反应时间、微波功率和反应温度.采用XRD,SEM和电化学测试仪研究了添加元素对LiCoO2结构和电化学性能的影响.研究发现,微波功率和反应时间对产物的结构有比较明显的影响.充放电试验结果表明,掺加La元素正极材料LiCoO2首次充放电容量达到了130 mAh.g-1.  相似文献   

11.
A composite comprised of oxygen reduction reaction (ORR) catalyst and oxygen evolution reaction (OER) catalyst was designed and applied as a bifunctional electrocatalyst for the air electrode of the lithium-air battery. The ordered mesoporous carbon nitride (MCN) prepared by a nano hard-templating approach displayed a surface area as high as 648 m2 g?1 and a large pore volume of 0.7 cm3 g?1 and acted as both the ORR catalyst and the support for the in situ-formed OER catalyst of Pt particles with a diameter of 3–4 nm. The electrochemical performances of the electrode were examined in a solid-state lithium-air cell structured as Li/LATP-based electrolyte/cathode, which demonstrated a higher round-trip efficiency and lower overpotential compared with the Pt@AB and MCN electrodes. The combination of the OER and ORR catalysts is proved as an effective way to improve the performance of lithium-air batteries.  相似文献   

12.
Since 1991, LiCoO2 used as cathode material of lithium-ion rechargeable batteries has attracted much attention in the industry of portable power apparatus such as mobiles, laptops and camcorders, etc. However, the production technologies of LiCoO2 have always been possessed by the foreign corporations. Although a plenty of research work has been performed in domestics, it is almost impossible to surpass the technological rampart, which renders our state to subject to much foreign exchange consumption.Many preparation methods such as solid state reaction, sol-gel process and hydrothermal synthesis et al have been reported in the literature. Via our studies, it is found that in the process of LiCoO2 synthesis not only lithium sources but also cobalt sources can play an important part in the physical and electrochemical properties, and also have a remarkable influence on the properties of LiCoO2.But as for the different synthesis methods, the necessary cobalt source is different, and as for the same synthesis method, the LiCoO2 prepared with different cobalt sources has different electrochemical performance.So far, the detailed findings on the LiCoO2 cathode material synthesized with various cobalt sources have not been reported yet in the literature. In this paper, the following work has been carried out.The LiCoO2 cathode material was synthesized by liquid-phase soft-chemistry process and solid state reaction at higher temperature with different cobalt sources respectively, and characterized by XRD, BET, SEM, TEM, laser particle size distribution and electrochemical testing. Its properties were compared. The effects of different cobalt sources, aqueous ammonia and ethanol additives on the physical and electrochemical properties of LiCoO2 cathode materials were investigated. The results have demonstrated that the different cobalt sources, aqueous ammonia and ethanol additives have remarkable influences on the physical and electrochemical properties of LiCoO2 cathode material. When liquid-phase soft-chemistry process is used to synthesize LiCoO2 cathode material,most excellent cobalt source when high-temperature solid state reaction method is used to prepare LiCoO2 cathode materials. The optimal sintering temperature range is 800℃~820 ℃ when liquid-phase soft-chemistry process is used to synthesize LiCoO2 cathode materials. Liquid-phase soft-chemistry process is superior to high-temperature solid state reaction method when LiCoO2 cathode materials is prepared.  相似文献   

13.
用固相反应合成了LiCoO2掺杂改性的LiMn2O4锂离子电池正极材料,优化了LiMn2O4的改性路径及制备条件.利用SEM、XRD对产物的结构进行了表征,并测试了产物的电化学性能.结果表明:所得产物均具有尖晶石型LiMn2O4结构.LiCoO2的掺入增加了尖晶石结构的稳定性,改善了尖晶石型LiMn2O4的充放电循环性能.  相似文献   

14.
采用喷墨打印技术制备了LiCoO2薄膜电极. 用X射线衍射、扫描电镜(SEM)、循环伏安和恒电流充放电试验对薄膜电极进行结构表征和电化学性能测试. SEM结果表明, 所制备的薄膜电极表面粒子分布均匀, 厚度约为1.27 μm. 经过轻微热处理(450 ℃, 30 min)的薄膜LiCoO2电极呈现出稳定的充放电循环性能. 当以20 μA/cm2进行充放电时, 第50次循环容量保持率约为首次放电容量(81 mA·h/g)的87%, 10次循环后的充放电过程的充放电效率均接近100%.  相似文献   

15.
Solid-state lithium-air battery represents one of the most promising energy storage systems to simultaneously achieve high energy density, safety, and cost-efficiency. Conventional inorganic solid electrolytes are not suitable for the lithium-air systems due to their spontaneous reactions with lithium and/or air. Meanwhile, the large-scale production of inorganic solid electrolytes at a low cost remains highly challenging to date. Recently, Yu et al. demonstrated that lithium-ion exchanged zeolite X membrane could be employed as the solid electrolyte for lithium-air battery owing to its unique microporous structure and the continuous ion-conduction pathway within a single crystal. Moreover, the lithium-ion exchanged zeolite X offers excellent compatibility with lithium and air and exhibits negligible air permeability. The integrated solid-state lithium-air battery exhibits superior electrochemical stability in ambient air compared to conventional liquid and solid electrolytes. Meanwhile, it offers flexibility, safety and tolerance against abuse. Since zeolites have been widely used in the chemical industry, this work opens up numerous opportunities in energy-related fields. The corresponding research has been published in Nature and can be accessed at https://www.nature.com/articles/s41586-021-03410-9.  相似文献   

16.
LiCoO(2) material is recovered from spent lithium-ion batteries and investigated as anode materials for Ni/Co power batteries for the first time. LiCoO(2) electrodes with a small amount of S-doping display excellent electrochemical properties. The electrochemical reactions occurring on M0 electrodes during the first several cycles and after being activated are proposed, respectively. A function mechanism of S powder on M10 electrode is also proposed.  相似文献   

17.
LiCoO2 as one of cathodes in lithium ion battery was prepared using ball mill on 800 Hz for 10 h, followed by ultra–sonic process in order to form LiCoO2 nanoparticle. Poly(vinyledene fluoride) PVDF was added into LiCoO2 nanoparticle using dimethylsulfoxide (DMSO) to form LiCoO2/PVDF composite. The addition of PVDF was able to fill the voids on LiCoO2 matrix, therefore the space gap between particles in the matrix could be eliminated. The morphology, crystal structure and composite conductivity of LiCoO2/PVDF were analysed using scanning electron microscope (SEM), X-ray diffraction (XRD) and conductivity meter. The results showed that LiCoO2 with PVDF had bigger conductivity value than LiCoO2 without PVDF.  相似文献   

18.
Recently, battery technology has come to require a higher rate capability. The main difficulty in high-rate charge-discharge experiments is kinetic problems due to the slow diffusion of Li-ions in electrodes. Nanosizing is a popular way to achieve a higher surface area and shorter Li-ion diffusion length for fast diffusion. However, while various nanoelectrodes that provide excellent high-rate capability have been synthesized, a size-controlled synthesis and a systematic study of nanocrystalline LiCoO2 have not been carried out because of the difficulty in controlling the size. We have established the size-controlled synthesis of nanocrystalline LiCoO2 through a hydrothermal reaction and, for the first time, clarified the structural and electrochemical properties of this intercalation cathode material. Lattice expansion in nanocrystalline LiCoO2 was found from powder X-ray diffraction measurements and Raman spectroscopy. Electrochemical measurements and theoretical analyses on nanocrystalline LiCoO2 revealed that extreme size reduction below 15 nm was not favorable for most applications. An excellent high-rate capability (65% of the 1 C rate capability at 100 C) was observed in nanocrystalline LiCoO2 with an appropriate particle size of 17 nm.  相似文献   

19.
目前商品化的锂离子电池大都采用LiCoO2作为正极材料[1],工业上锂钴氧化物(LiCoO2)多采用高温固相合成法生产,烧结时间长达24-48h,制得的粉末粒度大分布范围广,形貌不规整[2]。溶胶 凝胶法前驱体的制备比较麻烦[3]。我们用固相配位化学反应法合成锂钴氧化物Li CoO2,操作简便兼具反应温度低、反应时间短、粒度分布均匀的优点[4,5]。本文采用氢氧化锂、乙酸钴和柠檬酸为原料,通过低热固相反应合成了Li+与Co2+达到分子级混合水平的前驱体、在400-800℃焙烧得LiCoO2产品,通过热重/差热、X射线衍射、扫描电镜和粒…  相似文献   

20.
P(VDF-HFP)-PMMA/CaCO3(SiO2)复合聚合物电解质的电化学性质   总被引:1,自引:0,他引:1  
采用激光扫描共焦显微镜、X射线衍射、循环伏安和交流阻抗等方法对由聚(偏二氟乙烯-六氟丙烯)(P(VDF-HFP))、聚甲基丙烯酸甲酯(PMMA)以及纳米碳酸钙(二氧化硅)制备的几种复合聚合物电解质(CPE)膜P(VDF-HFP)-PMMA/CaCO3(SiO2)的性能进行了研究. 结果表明, PMMA的加入能提高CPE的吸液率, 从而增大其离子导电率. 在P(VDF-HFP)与PMMA质量比为1:1条件下制得的CPE性能最佳. 用P(VDF-HFP)-PMMA为聚合物基体与纳米级SiO2、CaCO3进行复合制成的聚合物膜, 无机粒子的加入没有破坏原来聚合物非晶结构; 室温下CPE的电导率达到3.42 mS·cm-1; 电化学稳定窗口为4.8 V. 电池Li/CPE/GMS(石墨基材料)的测试证明, CPE与石墨负极有很好的相容性. 聚合物电池Li/CPE(CaCO3)/LiCoO2比Li/CPE)(SiO2)/LiCoO2具有更优越的倍率放电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号