首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 663 毫秒
1.
High quality Er3+/Tm3+:LiYF4 single crystals were grown by a Bridgman method. The absorption spectra and luminescent properties of the crystals were studied to characterize the effect of Tm3+ on the spectroscopic properties upon excitation of an 800 nm laser diode. The broaden 1.5 μm and the enhanced 2.7 μm emission were observed in the Er3+/Tm3+ co‐doped LiYF4 single crystals. Meanwhile, the up‐conversion and 1.5 μm emission intensities from Er3+ decrease with increasing the ratio of Tm3+ to Er3+. The energy transfer processes between Tm3+ and Er3+ in the Er3+/Tm3+ co‐doped samples were analyzed. The energy transfer efficiency ηETE from Er3+ to Tm3+ is calculated. The highest ηETE of 65.30% for the sample with 0.296 mol% of Er3+, 0.496 mol% of Tm3+ concentration was obtained. The present work indicates that Er3+/Tm3+ co‐doped LiYF4 single crystal can be a promising material for the potential application in infrared devices.  相似文献   

2.
Erbium doped LiNbO3 (Er:LiNbO3) single crystal fibers were grown free of cracks along c‐axis by the micro‐pulling down (μ‐PD) method. We have investigated the up‐conversion property with the change of doped Er2O3 concentration and the starting melt composition. An enhancement of green upconversion according host matrix is also observed the stoichiometric LiNbO3. And, the dependence of the green emission according to Er3+ concentration is analyzed. The possible application of the Er3+ doped stoichiometric LiNbO3 single crystal fiber for up‐conversion based optical devices is discussed.  相似文献   

3.
Erbium (Er3+) doped LiNbO3 single crystal thin films have been grown LiNbO3 (001) substrate by the liquid phase epitaxy method. The crystallinity was determined by high‐resolution X‐ray diffraction. The lattice mismatch between Er3+ doped LiNbO3 films and LiNbO3 (001) substrate was investigated by X‐ray rocking curve analysis. Also we studied the structural characteristics of Er3+ doped LiNbO3 films and surface morphology dependent on the film thickness.  相似文献   

4.
The Er3+doped Mg:LiNbO3single crystal fibers employed in our experiment were grown in air by a micro‐pulling down (μ‐PD) method from host materials of a congruent Li/Nb (0.945) ratio which were melt‐doped with a nominal molar concentration of 1, 3, 5% MgO and 0.6% Er2O3. The X‐ray diffraction analysis results indicated that the co‐doped crystals main tained the same structural characteristics as the undoped LiNbO3, however the lattice parameters with Mg differed; c (Å) value decreased, and a (Å) increased than of pure LiNbO3. The influence of dopants on the photoluminescence (PL) properties of the Er:Mg:LiNbO3 single crystal fibers excited by laser lines of 514 nm was reported. Also, the PL properties according to temperature and the excitation power of Er:Mg:LiNbO3 crystal fibers were analyzed.  相似文献   

5.
The as‐grown surface and inner structures of undoped and Nd3+‐, Cr3+‐, V3+‐, Ce3+‐, Er3+ and Yb3+ – and (Er3+ + Yb3+) – doped yttrium aluminum borate (YAB) single crystals grown from (K2Mo3O10 + B2O3) flux by spontaneous crystallization or top seeded solution growth (TSSG) technique, were investigated using optical and scanning electron microscopic and analytic chemical methods. Fine and rough growth hillocks of dislocational origin, growth layers, traces of inner planar defects and foreign phase crystalline debris were found and analyzed on the as‐grown faces of crystals. Irregular grains and regular block structures and foreign phase inclusions were observed and studied in the interior of the crystals. The chemical compositions measured by energy dispersive X‐ray spectrometry on perfect and imperfect micro regions are compared with those obtained by flame atomic absorption spectrometry on bulk crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Codoped Hf: Er: LiNbO3 crystals have been grown by the Czochralski technique. Defect structures of the crystals were analyzed by IR absorption spectra, and the compositions of the crystals were measured by X‐ray fluorescent spectrograph. A new OH‐associated vibrational peak at 3492 cm–1 was revealed in 6 mol % Hf: 1 mol % Er: LiNbO3 crystal. It was attributed to (HfNb)‐OH‐(ErNb)2– defect centers. The Er3+ concentrations in crystals gradually decreased with the increase of the codoped Hf4+ concentrations in the melts. The emission characteristics of the crystals were investigated by the fluorescence spectrum. It was found that the luminescent intensity in codoped 6 mol % Hf: 1 mol % Er: LiNbO3 crystal was 3.5 times stronger than that in single doped 1 mol % Er: LiNbO3 crystal. The luminescent enhancement effect was successfully explained on the basis of defect structure of the crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this paper we present the study of the acoustic phonons propagating in Er3+‐doped KGd(WO4)2 single crystals by Brillouin spectroscopy. For the investigated crystals the velocities of the longitudinal and transverse acoustic phonons [100], [010], [001], [101] and [110] have been determined. Moreover, the values of the elastic constants: C22, C44 and C66 of Er3+‐doped KGd(WO4)2 single crystals have been estimated. It was revealed that the presence of the Er3+‐ions in KGd(WO4)2 crystals, for the used doping concentration 1 at% does not influence their elastic properties. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The optical absorption spectra of LiNbO3 (LN), Fe:LiNbO3 (Fe:LN), and Zn:Fe:LiNbO3 (Zn:Fe:LN) single crystals grown by Bridgman method were measured and compared. The absorption characteristics of the samples and the effects of growth process conditions on the absorption spectra were investigated. The Fe, Zn and Li concentrations in the crystals were analyzed by inductively coupled plasma (ICP) spectrometry. The results indicated that the overall Fe ion and Fe2+ concentration in Fe:LN and Zn:Fe:LN crystals increased along the growing direction. The incorporation of ZnO in Fe:LN crystal induced increase of Fe2+ in the crystal. Among Fe‐doped and Zn:Fe‐codoped LN single crystals, 3 mol% ZnO doped Fe:LN had a biggest change of Fe2+ ion concentration from bottom to top part of crystal. The effects of technical conditions (atmosphere and thermal history) on Fe2+ ion concentration were discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This paper reports crystal growth and optical characteristics of dysprosium (Dy3+) and erbium (Er3+) doped mid‐infrared laser crystal ternary‐potassium‐lead‐chloride (KPb2Cl5). Two transparent crystals with good optical quality have been grown successfully by using the Bridgman technique,the largest crystal size reaches up to ∅︁10×60mm2. Measurements of X‐ray diffraction(XRD) and absorption spectra were carried out. Based on Judd‐Ofelt theory, the intensity parameters Ωt(t=2,4,6), the experimental and theoretical oscillator strengths have been obtained.The intensity parameters Ωt(t=2,4,6) of Er3+:KPb2Cl5 were calculated to be Ω2=5.10×10‐20 cm2, Ω4=1.25×10‐20 cm2, Ω6=0.83×10‐20 cm2, and the values for Dy3+:KPb2Cl5 were calculated to be Ω2=6.26×10‐20 cm2, Ω4=2.45×10‐20 cm2, Ω6=0.04×10‐20 cm2 respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Single crystals of GdCa4O(BO3)3 (GdCOB) pure and doped with Eu concentration of 1 and 4 at% were grown by the Czochralski and micropulling‐down methods. The distribution of Eu ions in GdCOB crystals was uniform. The substitutions of Eu3+ in Gd, Ca(1) and Ca(2) cation sites and eventually formation Eu2+ have been investigated. The spectroscopic properties of crystals are compared with the properties of nanopowders obtained by sol‐gel method. Radioluminescence spectra of undoped GdCOB crystal show the characteristic emission of Gd3+ at about 312 nm, whereas this emission dramatically decreases in Eu‐doped crystals upon X‐ray excitation, as well as in Eu‐doped nanopowders excited in vacuum ultraviolet (VUV) region. The VUV excitation in the range 125‐333 nm for Eu‐doped samples leads to strong emission in red coming from the 5D0 multiplet of Eu3+, only. In the photoluminescence decay kinetics of 312 nm emissions substantial shortening and departure for single exponential decay in Eu‐doped samples is clearly observed. Higher Eu doping results in further acceleration of the decay. In undoped GdCOB crystal, the lifetime of the Gd3+ 6P7/2 multiplet is 2.79 ms. The Eu3+ 5D0 decay kinetics monitored at 613 nm are rather constant. Numerical fitting of fully exponential curves, reveals lifetimes 2.7 ms for nanopowder and 2.5 ms for single crystal. The results suggest that this material may be used as a red phosphor in plasma display panels in nanopowder form because of strong excitation band of Eu3+ luminescence in the 160‐200 nm regions. Contrary to nanopowder sample, such an excitation band, attributed to the Gd3+–O2– charge transfer was not observed in crystal obtained by the micropulling‐down method. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
《Journal of Non》2006,352(23-25):2380-2384
In Er:doped crystals, the 1.5-μm (4I13/24I15/2) transition is of negligibly small intensity. To intensify this transition, the (Gd,Y)3(Ga,Sc)5O12 host crystal has been chosen as a basic medium. The single crystal garnet films with thickness up to 18-μm were grown using the method of liquid-phase epitaxy on Gd3Ga5O12 substrates. The 20-at.% maximal concentration of Er3+-ions was achieved without luminescence quenching. The up-conversion processes were neutralized by the addition of an Fe-ions sensitizer. At the same level of absorbed pumping power, the luminescence intensity at the 1.5-μm band for the Er:Fe:doped crystal was approximately one to two orders of magnitude higher than that for traditional content. Heavily doped crystals demonstrated broadening of the luminescence band up to 300 nm.  相似文献   

12.
Series of mixed valence monophosphates AFe3‐xMgx(PO4)3 [A = Sr(x = 0), Ba(x = 0.6), Pb(x = 0.6)] were synthesized by mild hydrothermal treatment at 210 °C. Refinements of single crystal X‐ray diffraction datas show all these compounds are isostructural. The attempts to make AFe3(PO4)3 (A = Ba, Pb) hydrothermally in the experiment were unsuccessful. However, the Mg‐doped homologues AFe2.4Mg0.6(PO4)3 (A = Ba, Pb) were synthesized with the addition of MgCO3 in the reactants as mineralizer. EDS and single crystal X‐ray data refinement indicated that the Mg2+ cations were doped in the Fe2+ sites of AFe2.4Mg0.6(PO4)3 (A = Ba, Pb). The influence of the Mg‐doping on the structure and the reason why the Mg doped in the Fe(II) site instead of A site was discussed from the point of view of the bond valence model.  相似文献   

13.
Using the micro‐pulling down (μ‐PD) method, 1 and 3 mol% Nd2O3 doped near stoichiometric lithium niobate (LiNbO3) single crystal fibers were grown in 1 mm diameter and 35∼40 mm length. The grown crystal fibers were free of cracks and the homogeneous distribution of Nd3+ ion concentrations were confirmed by the electron probe micro analysis. The changes of fluorescence spectra were measured with respect to the Nd3+ ion doping concentration. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
《Journal of Non》2006,352(21-22):2090-2095
Novel oxyfluoride glasses SiO2–Al2O3–Na2O–ZnF2 doped with Er3+ and Er3+/Yb3+ were fabricated. The optical properties of the synthesized glasses were experimentally and theoretically investigated in detail. The experimental and calculated oscillator strengths of Er3+ were determined by measurement of the absorption spectrum of Er3+-singly doped glass. According to the Judd–Ofelt theory, the experimental intensity parameters were calculated, from which the radiative transition probabilities, fluorescence branching ratios and radiative lifetimes were obtained. The fluorescence lifetime and quantum efficiency for the near-infrared emission of Er3+-singly doped glass were determined to be 3.0 ms, and 42%, respectively. Visible upconversion luminescence was observed under 980 nm diode laser excitation. The dependence of the upconversion emission intensity upon the excitation power was examined, and the upconversion mechanisms are discussed.  相似文献   

15.
Forsterite monocrystals doped with Ti and Ni were grown by the flux growth technique. A suitable mixture of flux (MoO3, V2O5, Li2CO3) and nutrient was slowly cooled down to 750 °C from 1250 °C or 1350 °C. The crystals were then characterized by powder and single‐crystal X‐ray diffraction, scanning electron microscopy and differential scanning calorimetry (DSC). Variations observed in crystal size were attributed by both the varying experimental conditions in which they had been obtained, and to the amount of Ni substituted for Mg in the structure. High abundances of doped forsterite required a cooling rate of 1.8 K h‐1. These synthetic, well‐characterized Ti and Ni doped forsterite crystals may have potential for exploitation in industrial fields. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Congruent Er3+(3 mol%):LiNbO3 crystals codoped with ZnO (X mol %, X=0, 3, 6 and 7) were grown by the Czochralski technique. The Er contents in the crystals were measured by an inductively coupled plasma atomic emission spectrometer (ICP‐AES). Under 800 nm excitation, the upconversion emission spectra reveal an enhancement of the green emission with respect to the red emission when the Zn2+ ions are introduced into Er:LiNbO3 crystal. The effect of Zn2+ ions concentration on the intensity ratio of the green to red emission has been investigated. Two cross‐relaxation processes (2H11/2 + 4I13/24I11/2 + 4F9/2 and 4F7/2 + 4I11/24F9/2 + 4F9/2) are involved in populating the 4F9/2 state, which bypass the green‐emitting states. The OH absorption spectra indicate that the Zn2+ codoping leads to a decreased concentration of Er3+ cluster sites contributing to the enhancement of the green emission. The studies on UV‐vis absorption spectra show that the heavily codoped with Zn2+ results in the reformation of the Er3+ cluster sites in Er:LiNbO3. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Chunlei Yu  Junjie Zhang 《Journal of Non》2007,353(27):2654-2658
Er3+ doped multicomponent fluoride based glass was prepared. These precursor fluoride glass samples were then heated using different schedules. Crystalline phase particles were successfully precipitated in the multicomponent fluoride glass samples after heat treatment. The influence of heat treatment on the spectroscopic properties of Er3+ in multicomponent fluoride based glass samples were discussed. Small changes of the Judd-Ofelt parameters Ωi (i = 2, 4, 6) were found in multicomponent fluoride glass samples before and after heat treatment compared to oxyfluoride telluride glass. Preparation conditions used to produce transparent multicomponent fluoride glass ceramics doped with rare-earth ions are discussed.  相似文献   

18.
Nd3+‐doped Y3Al5O12 single crystals have been grown by the horizontal directional solidification (HDS) method in different thermal zone. The Grashof (Gr), Prandtl (Pr), Marangoni (Ma) and Rayleigh (Ra) numbers of melt in HDS system have been discussed for our experimental system to understand the mechanism of melt flow patterns and concentration gradient of dopant. The concentration gradient of Nd3+ ions was explained with melt flow processes during crystal growth in different thermal zone, and results indicated that high growth temperature will be helpful for uniformity of dopant in HDS‐grown single crystal. The main microscopic growth defects such as bubbles and irregular inclusions in HDS‐grown Nd:YAG crystals were observed, and the causes were discussed as well. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
A neodymium doped Ca5(BO3)3F single crystal with size up to 51×48×8 mm3 has been grown by the top seeded solution growth (TSSG) technique with a Li2O‐B2O3‐LiF flux. The spectra of absorption and fluorescence were measured at room temperature. According to Judd‐Ofelt (J‐O) theory, the spectroscopic parameters were calculated and the J‐O parameters Ω2, Ω4, Ω6 were obtained as follows: Ω2 = 1.41×10−20cm2, Ω4 = 3.18×10−20cm2, Ω6 = 2.11×10−20cm2. The room temperature fluorescence lifetime of NCBF was measured to be 51.8 μs. According to the J‐O paramenters, the emission probabilities of transitions, branching ratios, the radiative lifetime and the quantum efficiency from the Nd3+ 4F3/2 metastable state to lower lying J manifolds were also obtained. In comparasion with other Nd‐doped borate crystals, the calculated and experimental parameters show that NCBF is a promising SFD crystal.  相似文献   

20.
In this paper we investigate the energy transfer processes in Tm3+/Er3+ doped telluride glass pumped at the commercial diode laser pump wavelength ∼800 nm. Tailoring the rare-earths content in the glass matrix, seven main energy transfer channels within the doping range considered were identified. A 6-fold enhancement of the Er3+ visible frequency upconversion fluorescence at ∼660 nm is observed due to the inclusion of Tm3+ ions. This is evidence of the relevant contribution of the route Er1(4I11/2) + Er2(4I13/2) → Er1(4I15/2) + Er2(4F9/2) to the process. Energy migration among pumped 4I9/2 level reducing the efficiency of the upconversion emission rate (3H11/2, 4S3/2, and 4F9/2) is observed for Er3+ above 1.5 wt%. The rate equations regarding the observed energy transfer routes are determined and a qualitative analysis of the observed processes is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号