首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We synthesized mercuric iodide and bismuth tri‐iodide nanoparticles by suspension in octadecene, from Hg(NO3)2.H2O and I2, and from Bi(NO3)3.5H2O and I2, respectively. The best synthesis conditions were 2 h at 70‐80 °C, followed by 10 min at 110 °C for mercuric iodide nanoparticles, and 4 h at 80‐110 °C, followed by 10 min at 180‐210 °C for bismuth tri‐iodide ones. Nanoparticles were then washed and centrifuged with ether repeatedly. Compounds identity was confirmed by X‐ray diffraction (XRD) and energy dispersive spectrometry (EDS). We found shifts of the X‐ray diffraction maxima for nanoparticles of both compounds. We characterized the nanoparticles by transmission (TEM) and scanning (SEM) electron microscopy. We obtained disk‐like and squared mercuric iodide nanostructures, 80‐140 nm and 100‐125 nm in size respectively. We also obtained rounded and rod‐like bismuth tri‐iodide nanoparticles, 30‐500 nm in size. Acetonitrile and isopropanol suspensions of mercuric iodide nanoparticles, and acetonitrile suspension of bismuth tri‐iodide nanoparticles exhibited peak maxima shifts in their UV‐Vis spectra. We synthesized for the first time mercuric iodide and bismuth tri‐iodide nanoparticles by the suspension method, although we have not yet obtained uniform shape and size distributions. They offer interesting perspectives for crystalline film nucleation and for improving current applications of these materials, as well as for opening new ones. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Well‐crystallized pure perovskite bismuth ferrite (BiFeO3) powders with various morphologies have been synthesized by a novel sol‐gel‐hydrothermal route for the first time, which combined the conventional sol‐gel process and the hydrothermal method. The as‐prepared samples were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA) and ferroelectric test system. The results revealed that the compositions, morphological and dimensional changes in bismuth ferrite samples synthesized by sol–gel–hydrothermal method strongly depend on the concentrations of mineralizer. Ferroelectric hysteresis loops are displayed in the BiFeO3 samples. The bismuth ferrites were hydrothermally synthesized at as low a temperature as 180 °C, which is comparatively lower than that synthesized by the normal sol–gel route. The formation mechanism of the bismuth ferrite crystalline was also discussed. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Various Cu‐phthalocyanine (CuPc) films were grown from physical vapor deposition on top of indium‐tin‐oxide glass substrates by controlling substrate temperature (Tsub), source temperature (Tsou), and growth time. From side‐view SEM pictures, the growth rates for these CuPc films are estimated and can be categorized into three regions. From the Arrhenius plot of growth rate versus 1/Tsub, the activation energy EA can be obtained. As Tsou = 390 °C, for region (A) with Tsub < 140 °C, the growth of CuPc films is dominated by the adhesion process with EA = 810 meV. For region (B) with 140 °C < Tsub < 320 °C, the growth is then limited by the steric character associated with the organic molecular solids with EA = 740 meV. For region (C) with Tsub > 320 °C, the re‐evaporation of the CuPc adhered molecules from the interface becomes dominant. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
This work investigates the growth of polycrystalline α-HgI2 thick films from physical vapor deposition. By varying the growth conditions, the as-deposited thick films are characterized by scanning electron microscopy, X-ray diffraction, current–voltage and photoconductivity measurements. The growth mechanism and its effects to the properties of these polycrystalline α-HgI2 thick films are then discussed. Finally, the best deposition conditions for polycrystalline α-HgI2 thick films compactly formed by separated columnar monocrystallines with uniform orientation along c-direction and with good crystallinity are reported.  相似文献   

5.
Bismuth germanate shaped crystals have been grown by the EFG (Stepanov) method. The correlation between growth rate, shape of crystals, their optical and scintillation parameters has been analysed. Optical and scintillation characteristics of the EFG crystals are similar to those obtained with Czochralski grown crystals, however, growth rate in EFG is by 2.5 times larger. Also we compare the photochromic effect under UV‐irradiation in EFG and Czochralski grown crystals. Material losses at fabrication of plates, pixels, and rods from EFG shaped plates may be reduced by ∼50% compared to large diameter boules.  相似文献   

6.
Several materials are under investigations for flat panel x‐ray detector applications. Among them, PbO shows interesting properties, i.e. high sensitivity, large stopping power and high resistivity at room temperature. However, the exploitation of PbO is limited by the difficulty to obtain good quality films constituted by a single phase. In this paper, we describe a new approach for the vapour phase growth of orthorhombic PbO films. The grown layers show a single phase, good crystallinity, and preferential orientation along the c axis. Optical characterization evidenced the presence of a broad defect band. Gold contacted films showed very high electrical resistivity and appreciable response to X‐ray radiation.  相似文献   

7.
The structure of the oxygen‐deficient compound 7Bi2O3 · 2WO3, a fluorite‐derivative phase considered a candidate for electronic applications because of its high ionic conductivity, is investigated by singlecrystal X‐Ray diffraction employing Ag‐Kα radiation (λ = 0.5608 Å) to minimize the effect of the absorption by the heavy metals. The space‐group type is I41, the acentric subgroup of I41/a that was previously suggested from powder‐diffraction data and precession‐camera photographs. Lattice parameters are a = 12.513(2), c = 11.231(4) (Z = 2.5). The sample is twinned by syngonic merohedry, class I, with volume ratio of the individuals 0.58/0.42. The ordering of W partly confirms previous models, with one W fully occupying one of the sites on special position. However, the remaining W goes in a site on general position, which shares with Bi, resulting thus more diluted in the structure. The oxygen vacancies are partly ordered in three of the ten anion sites.  相似文献   

8.
Thermally processed lead iodide (PbI2) thin films were prepared by the vacuum evaporation method in a constant ambient. Measured thickness of the film was verified analytically from the optical transmittance data in a wavelength range between 300 and 1600 nm. From the Tauc relation for the non‐direct inter band transition, the optical band gap of the film was found to be 2.58 eV for film thickness 300 nm. X‐ray diffraction analysis confirmed that PbI2 films are polycrystalline, having hexagonal structure. The low fluctuation in Urbach energy indicates that the grain size is quite small. The present findings are in agreement with the other results. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
SrMoO4 rose‐like and persimmon‐like structures were synthesized via microwave radiation‐assisted chelating agent method. The microstructure and morphology of the as‐prepared samples were analyzed by X‐ray diffraction and field‐emission scanning electron microscope. According to the experimental results, ethylenediaminetetraacetic acid, as an outstanding chelating agent, plays an important role in inducing the morphology evolution. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Cerium‐doped terbium gallium garnet single crystal having a large Verdet constant was grown by floating zone (FZ) method, which was suitable for the use in optical devices. The lattice parameters and the X‐ray rocking curve measurement of the crystal was determined by X‐ray diffraction analysis. The Verdet constant of the crystal (B = 0.55 T) at the wavelength of 632.8 nm was −165.8 rad m−1 T−1 at room temperature, 23.7% larger than that of pure TGG (−134.0 rad m−1 T−1). The performance of the high optical quality and excellent magneto‐optical properties of the crystal shows the great potential of using this new method to meet the increasing demand of VI‐NIR Faraday rotators.  相似文献   

11.
The recently discovered crystal growth method called uniaxially solution‐crystallization method of Sankaranarayanan–Ramasamy (SR) is modified in some aspects and used for growth of triglycine sulphate (TGS) crystals. The modification leads to the simplicity, reduction of cost and avoided the temperature fluctuations. The 〈010〉 direction of TGS is very important and used for fabrication of infrared detectors. Using this method, the 〈001〉, 〈010〉 directional crystals of TGS were successfully grown in a glass crystallizer. The grown crystal was characterized by HRXRD, UV‐Visible and dielectric studies. The results prove the suitability of the modified SR method for oriented TGS crystal. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The in‐plane structures of vapor deposited ultrathin films of distyryl‐oligothiophenes (DS‐2T) on SiO2 substrate were characterized by grazing incidence x‐ray diffractometry (GIXD). Two polymorphs, low‐temperature and high‐temperature phases, were identified, and the two dimensional unit cell parameters were determined for each polymorph. The polymorphism depends on substrate temperature and film thickness. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The single crystals of triglycine sulfate doped with bivalent and tetravalent Pt‐ions and with L‐alanine (LADTGS/Pt(II) and LATGS/Pt(IV)) were grown in the ferroelectric phase from low temperature solutions. Using stick seeds the full‐shaped crystals with many growth pyramids have been prepared. The growth rate along the axis c of the doped crystals is much higher than in an undoped one. Morphology, domain structure and PE hysteresis loops have been investigated. The effect of the dopant on the growth velocity is explained on the basis of catalytic action of supposed platinum complexes. The first series of the pyroelectric detectors have been prepared from these materials and their fundamental parameters are presented. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Nanopowders of Y2O3 pure, doped and codoped by Nd3+, Yb3+ were obtained by sol‐gel method. Solution with ethylene glycol was choosed as the proper solution where crystallites of powder with Nd and Yb dopants had the same size. Finally the one‐phased compounds of Y2O3 doped 0.5 at% Nd and 1, 2 or 4 at% Yb were obtained. Grain growth and their morphology were investigated in various temperature and time of heating. The changes of crystallite sizes and lattice constants in relation to the heating time and temperature for the composition Y2O3 doped 0.5 at% Nd and 2 at% Yb are presented. Y2O3 containing 0,5 at% of Nd exhibits intense luminescence bands centered at 920 nm, 1100 nm and 1360 nm whereas a single band at about 1020 nm appears in samples co‐doped with neodymium and ytterbium. Luminescence spectra recorded did not depend on the sample preparation procedure and size of grains. OH impurity affects critically the relaxation dynamics of luminescent ion in nanopowders. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Large‐yield zinc oxide (ZnO) nanosized tetrapods have been obtained by a standard vapour‐phase growth technique to which a few modifications have been added, such as the separation of the Zn source evaporation region from the Zn oxidation region inside the reactor setup. This modification allows to keep the growth conditions constant and continuous for a long time, thus favouring the obtainment of large amounts of ZnO tetrapod nanostructures. As some contaminations usually occur due to metallic Zn particles and/or different ZnO nanostructures, including not completely reacted ZnO1‐x solid phases, they can be removed by a three‐step “purification” procedure as described in the article. Further to that, a deposition method from suitable liquid suspensions is also reported, which allows to produce homogeneous distributions of ZnO tetrapods on large substrate areas. The proposed procedures are expected to be particularly appropriate for a large production of samples for device use. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Different morphologies of indium telluride (In2Te3) including novel spherulites were crystallized using the physical vapour deposition (PVD) method, by varying the difference in the growth and source zone temperature (ΔT) of a dual zone horizontal furnace assembled indigenously. Whiskers and kinked needles of In2Te3were grown at ΔT = 250 K and 300 K respectively, maintaining the growth zone at 500 °C. At high supersaturation (Δ T = 400 K), spherulitic crystals were obtained. The stoichiometric composition of these crystals has been confirmed using energy dispersive analysis by x‐rays (EDAX). The structure of β‐In2Te3 spherulitic crystals is identified as zinc blende with lattice parameter a = 6.159 Å, from x‐ray diffraction (XRD) studies. The scanning electron microscope (SEM) images revealed the radial structure of the grown spherulites. The growth mechanism for the spherulitic crystallization of β‐In2Te3 crystals has been discussed based on the theoretical models. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
By directional solidification, single crystal of Sulphamic acid (SA) was successfully grown from aqueous solution by Sankaranarayanan‐Ramasamy (SR) method. A vertically designed L‐bend was used to avoid the effect due to spurious nucleation. A vertical bottom‐seeded ampoule was used for the growth of single crystal. A seed crystal was mounted at the bottom of the ampoule. Sulphamic acid crystals of up to 40 mm in diameter and 60 mm in length have been grown with a growth up to 10 mm per day. The grown sulphamic acid single crystal was characterized using X‐ray powder diffraction analysis, Raman, FTIR, and optical transmission studies. The dielectric behaviour was measured in the frequency range of 1 kHz–10 MHz for the temperature ranges from 30 °C to 170 °C. The sulphamic acid single crystal was also grown by conventional method. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Techniques to reduce dislocation densities in GaN grown on foreign substrates are an interesting alternative to bulk growth as long as efficient bulk crystals growth techniques are not available. In this paper a new approach for epitaxial lateral overgrowth (ELO) of GaN through an in‐situ grown self‐organized amorphous (diamond‐like) carbon mask is demonstrated. The ELO was done for the first time by physical vapour transport of Ga, using NH3 as a nitrogen source. The overgrowth results in a decrease of the threading dislocation density by at least one order of magnitude compared to that of the MOCVD GaN/sapphire templates. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Good quality, large single crystals of CdSe were grown by the modified growth method (i.e., vertical unseeded vapor phase growth with multi-step purification of the starting material in the same quartz ampoule without any manual transfer between the steps). Lower temperature gradients (8–9°C/cm) at the growth interface were used for the crystal growth. As-grown CdSe crystals was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive analyzer of X-rays, high-resistance instrument measurement, and etch-pit observation. It is found that there are two cleavage faces of (1 0 0) and (1 1 0) orientations on the crystal, the resistivity is about 108 Ω cm, and the density of etch pits is about 103–4/cm2. The crystal was cut into wafers and was fabricated into detectors. The detectors were tested using an 241Am radiation source. γ-ray spectra at 59.5 keV were obtained. The results demonstrated that the quality of the as-grown crystals was good. The crystals were useful for fabrication of room-temperature-operating nuclear radiation detectors. Therefore, the modified growth technique is a promising, convenient, new method for the growth of high-quality CdSe single crystals.  相似文献   

20.
PbS microcrystals with a magic‐square‐shaped structure were successfully fabricated via a simple hydrothermal route, employing (CH3COO)2Pb and Na2S2O3 as the lead and sulfur source without the assistance of any surfactant or template. S2O32‐ ions acted not only a supplier of S2‐ ions but also a coordinating reagent. The formation of the above morphology was the direct result of the coordination between thiosulfate ions and lead ions. Researches indicated that the different synthetic approach could influence the morphology of the final product. A possible formation mechanism was suggested. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号