首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the growth of bismuth tri‐iodide thick films intended for direct and digital X‐ray imaging. Films were grown by the vertical physical vapor deposition method, onto glass substrates 2″x 2″ in size, with gold previously deposited as rear electrode. The film thickness was up to 33 μm (±5 %). Optical microscopy and SEM were performed on the films and grain size resulted to be up to 40 μm. A strong correlation was found between the microcrystals growth orientation and the growth temperature. At low temperatures, microcrystals grow with their c axis parallel to the substrate, whereas at higher temperatures, they grow with their c axis perpendicular to the substrate. The higher the growth temperature, the lower the dark current of the film, and the higher the resistivity, which was from 1013 to 1015 Ωcm. A sensitivity to X‐rays of 6.9 nC/R.cm2 was measured irradiating the films with X‐rays from a mamographer. Film properties were correlated with the growth temperature, with previous results for bismuth tri‐iodide films and monocrystals and with data for films of alternative materials such as lead and mercuric iodide. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Various Cu‐phthalocyanine (CuPc) films were grown from physical vapor deposition on top of indium‐tin‐oxide glass substrates by controlling substrate temperature (Tsub), source temperature (Tsou), and growth time. From side‐view SEM pictures, the growth rates for these CuPc films are estimated and can be categorized into three regions. From the Arrhenius plot of growth rate versus 1/Tsub, the activation energy EA can be obtained. As Tsou = 390 °C, for region (A) with Tsub < 140 °C, the growth of CuPc films is dominated by the adhesion process with EA = 810 meV. For region (B) with 140 °C < Tsub < 320 °C, the growth is then limited by the steric character associated with the organic molecular solids with EA = 740 meV. For region (C) with Tsub > 320 °C, the re‐evaporation of the CuPc adhered molecules from the interface becomes dominant. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
立方砷化硼(BAs)为间接带隙、闪锌矿结构的Ⅲ-Ⅴ族化合物半导体材料.理论分析预测BAs具有仅次于金刚石的超高热导率,在电子器件散热领域表现出广阔应用前景,成为当前的研究热点.近年来立方BAs单晶材料的制备取得突破性进展,采用化学气相传输法(CVT)合成了毫米尺寸的高质量单晶,室温下热导率高达1300 W·m-1·K-...  相似文献   

4.
Cubic CdS (β‐CdS) polycrystalline thin films were prepared on glass substrates by chemical synthesis at 80 °C. Samples were subjected to thermal treatments (TT) in the range of temperatures (T) 180 – 500 °C during 30 hours in different ambients. Annealing in air and in H2 produces in CdS larger lattice parameter enlargements (≤2.5 %) when T of TT increases up to T ≤ 500 °C. Whereas, annealing in Ar + S2 and vacuum provokes intermediate (≤1.2 %) and smaller (≤0.9 %) maxima values of the lattice parameter increments, respectively. Energy band gap (Eg) as a function of T of TT and as a function of the lattice parameter has been also studied where it was observed that Eg behaves in very different manners depending on the ambient chosen for annealing. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Zincphthalocyanine (ZnPc) thin films were prepared by the vacuum evaporation method under a pressure of 10‐6 mbar. The X‐ray diffraction analysis of vacuum evaporated ZnPc films reveals that the structure of the films is polycrystalline in nature. The photoconduction properties have been studied in the wavelength range 400 –800nm using suitable masks. The Photoconductivity of the films as a function of light intensity and applied voltage were studied and results were discussed in detail. The photoconduction was found to increase with higher light illumination and maximum at the band edge of the ZnPc thin film. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
《Journal of Crystal Growth》2000,210(4):587-594
Thermodynamic analysis of the system Bi–Sr–Ca–Cu–O–C–H–Ar using the Gibbs energy minimization method was performed to propose feasible deposition conditions for the growth of superconducting Bi-2212 films. The results show that the films containing Bi-2212 can be prepared at temperatures above 1000 K under reduced pressure with the input ratio Bi : Sr : C a : Cu close to 2 : 2 : 1 : 2. The growth experiments were carried out in a cold-wall RF-heated quartz reactor at temperatures of 800 and 850°C and a total pressure of 1 kPa. 2,2,6,6-tetramethyl-3,5-heptanedionates of Cu, Ca and Sr and triphenylbismuth were used as metal precursors. The films were characterized by X-ray diffraction, electron microprobe analysis and scanning electron microscopy. The highest critical temperature determined by measuring the AC magnetic response was 71 K.  相似文献   

7.
ZnSe films were deposited on glass substrates keeping the substrate temperatures, at room temperature (RT), 75, 150 and 250 °C. The films have exhibited cubic structure oriented along the (111) direction. Both the crystallinity and the grain size increased with increasing deposition temperature. A very high value of absorption co‐efficient (104 cm‐1) is observed. The band gap values decrease from a value of 2.94 eV to 2.69 eV with increasing substrate temperature. The average refractive index value is in the range of 2.39 – 2.41 for the films deposited at different substrate temperatures. The conductivity values increases continuously with temperature. Laser Raman spectra showed peaks at 140.8 cm‐1, 246.7 cm‐1and 204.5 cm‐1which are attributable to 2TA LO phonon and TO phonon respectively. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We calculate the electric conductivity and the temperature coefficient of resistance (TCR) of a multilayered film consisting of the alternating polycrystalline metal layers of different thickness and purity within the relaxation time formalism. In the case of Cr, Cu and Co‐based multilayered films we perform verification of our analytical formulas and demonstrate a qualitative agreement between the theoretically calculated values of the TCR and experiment. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Thermally processed lead iodide (PbI2) thin films were prepared by the vacuum evaporation method in a constant ambient. Measured thickness of the film was verified analytically from the optical transmittance data in a wavelength range between 300 and 1600 nm. From the Tauc relation for the non‐direct inter band transition, the optical band gap of the film was found to be 2.58 eV for film thickness 300 nm. X‐ray diffraction analysis confirmed that PbI2 films are polycrystalline, having hexagonal structure. The low fluctuation in Urbach energy indicates that the grain size is quite small. The present findings are in agreement with the other results. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
X-ray diffraction studies of diamond films obtained by chemical transport reactions at the concentrations of 2% methane and 98% hydrogen under pressures of 10.7 and 21.3 kPa showed that they are textured. The character of the texture depends on the substrate temperature. The films have {110}, {311}, or double {110} + {311} textures. It is established that the dependence of the growth rate of diamond films on the substrate temperature has maxima. The diamond films are finely dispersed and are characterized by pronounced micro-deformations and high dislocation densities. The temperature dependence of the growth rate correlates with the parameters of the real structure of the films.  相似文献   

11.
单晶材料的新发展及其对生长技术的挑战   总被引:5,自引:5,他引:0  
近年来,宽带隙半导体GaN、SiC、ZnO,弛豫铁电体PZNT,热电半导体β-FeSi2,超导体MgB2等功能晶体材料引起了人们的广泛关注.这些材料大多具有非常优异的性能和巨大的应用前景,但生长工业应用的体单晶非常困难.本文从晶体生长技术角度综述了这些晶体的研究进展,结合其物理化学特性探讨了单晶生长中遇到的一些关键问题.通观这些热点单晶材料的研究现状,一方面我们可以把晶体膜的制备技术看作是传统晶体生长技术的延伸,另一方面,膜技术的发展和单晶生长中存在的问题,也是对传统生长工艺的挑战.  相似文献   

12.
采用添加PbO的TGG方法定向生长PMNT多晶体,研究了素坯成型压力对PMNT多晶体取向生长的影响规律.结果表明,成型压力直接影响PMNT多晶体的取向生长速度和取向程度.随着成型压力逐渐增大,PMNT多晶体的取向生长速度呈先增加后减小的趋势.低于临界成型压力(在本文实验条件下,临界成型压力为600MPa)时,随成型压力增大,PMNT多晶体的取向生长速度越来越快;高于临界成型压力时,随成型压力增大,PMNT多晶体的取向生长速度越来越慢,但是多晶体的取向程度却越来越好.  相似文献   

13.
Anodic oxide films were grown on SiC using various electrolytes. The obtained oxide films were compared and some of their electrophysical properties were investigated. Anodic oxidation of SiC was shown to be useful for precise removal of layers as well as for identification of the polar faces of SiC crystals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Optical properties of spray deposited antimony (Sb) doped tin oxide (SnO2) thin films, prepared from SnCl2 precursor, have been studied as a function of antimony doping concentration. The doping concentration was varied from 0‐4 wt.% of Sb. All the films were deposited on microscope glass slides at the optimized substrate temperature of 400 °C. The films are polycrystalline in nature with tetragonal crystal structure. The doped films are degenerate and n‐type conducting. The sheet resistance of tin oxide films was found to decrease from 38.22 Ω/□ for undoped films to 2.17 Ω/□ for antimony doped films. The lowest sheet resistance was achieved for 2 wt.% of Sb doping. To the best of our knowledge, this sheet resistance value is the lowest reported so far, for Sb doped films prepared from SnCl2 precursor. The transmittance and reflectance spectra for the as‐deposited films were recorded in the wavelength range of 300 to 2500 nm. The transmittance of the films was observed to increase from 42 % to 55 % (at 800 nm) on initial addition of Sb and then it is decreased for higher level of antimony doping. This paper investigates the variation of optical and electrical properties of the as‐deposited films with Sb doping. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
ZnAl2O4 is a well‐known wide band gap compound semiconductor (Eg=3.8eV), ceramic, opto‐mechanical, anti‐thermal coating in aero‐space vehicles and UV optoelectronic devices. A novel method for the growth of single crystals of a ternary oxide material was developed as a fruit of a long term work. Material to be grown as metal incorporated single crystal was taken as precursor and put into a bath containing acid as reaction speed up reagent (catalyst) as well as solvent with a metal foil as cation scavenger. Using this method, ZnAl2O4 crystals having hexagonal facets are prepared from a single optimized bath. Structural and compositional properties of crystals were studied using Philips, Xpert ‐ MPD: X‐ray diffractometer and Philips, ESEM‐TMP + EDAX. Thus technique was found to be a new low cost and advantageous method for growth of single crystals of ternary oxide a material. We hope that these data be helpful either as a scientific or technical basis in material processing. Dedicated to Prof. P. Ramasamy © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

16.
Based on SnS (Herzenbergite) – SnPbS2 (Teallite) mixed crystals with orthorhombic layer structures, thin films and lawns of Sn1‐xPbxS nanorods were produced using hot wall vacuum deposition method (HWVD). The lawn was formed onto the surface of an underlying thin Sn1‐xPbxS film which is build by differently oriented blocks. The density of rods arranged like a lawn depends on the metal ratio and substrate temperature. X‐ray and TEM analysis of the epitaxial material showed preferential (001) orientation perpendicular to the surface of the glass substrate. The roughness of the films measured by atomic force microscopy was in the range of Rq = 49.5–86.3 nm depending on lead concentration The rods were about 500 nm high and 300 nm in diameter. As revealed by TEM‐EDX experiments the droplet at the tip of rods consists of tin. Therefore it is assumed the rods grew via a self‐consuming vapor–liquid–solid (VLS) mechanism. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Cd0.96Zn0.04Te thin films are deposited onto thoroughly cleaned glass substrates (Corning 7059) kept at room temperature by vacuum evaporation. The films are found to have good stoichiometry as analyzed by Rutherford Backscattering Spectrometry. The films exhibited zinc blende structure with predominant (111) orientation. The surface morphology of the films is studied by Atomic Force Microscopy. The rms roughness of the films evaluated by AFM is 3.7 nm. The pseudodielectric‐function spectra, ε(E) = ε1(E) + i ε2(E) at room temperature are measured by spectroscopic ellipsometry. The measured dielectric function spectra reveal distinct structures at energies of the E1, E1+ Δ1 and E2 critical points. The band gap energy of the films measured by optical transmittance measurement is 1.523 eV. The PL spectrum of the films shows intense emission due to free and bound exciton recombination and no emission associated with crystal imperfection and deeper impurity levels. The PL line shapes give indications of the high quality of the layers.  相似文献   

18.
通过低压化学气相沉积方法,在Si(100)衬底上生长了高度择优取向的3C-SiC(100)薄膜.SiC(200)峰的摇摆曲线表明SiC薄膜的结晶质量随着丙烷气体引入温度(Tgi)的升高而增加.选区电子衍射像表明高Tgi下生长的薄膜比低Tgi下生长的薄膜具有更好的取向.典型的SiC薄膜高分辨像中观察到了孪晶和层错.表面场发射扫描电镜像表明随着Tgi的升高,SiC薄膜的表明形貌发生了改变.  相似文献   

19.
Semiconducting thin films of cadmium selenide have been grown by conventional thermal evaporation technique. The effect of various growth parameters like rate of deposition and deposition temperature has been studied in detail. Films deposited at room temperature are cadmium rich with segregated selenium globules. A deposition temperature of 453 K has been found to yield stoichiometric, homogeneous films. The films have been analysed for optical band gap and thermal activation energies. Films of low electrical resistivity have been obtained for possible applications.  相似文献   

20.
碳化硅(SiC)作为第三代半导体材料,不仅禁带宽度较大,还兼具热导率高、饱和电子漂移速率高、抗辐射性能强、热稳定性和化学稳定性好等优良特性,在高温、高频、高功率电力电子器件和射频器件中有很好的应用潜力。高质量、大尺寸、低成本SiC单晶衬底的制备是实现SiC器件大规模应用的前提。受技术与工艺水平限制,目前SiC单晶衬底供应仍面临缺陷密度高、成品率低和成本高等问题。高温溶液生长(high temperature solution growth, HTSG)法生长SiC单晶具有晶体结晶质量高、易扩径、易实现p型掺杂等独特的优势,有望成为大规模量产SiC单晶的主要方法之一,目前该方法的主流技术模式是顶部籽晶溶液生长(top seeded solution growth, TSSG)法。本文首先回顾总结了TSSG法生长SiC单晶的发展历程,接着介绍和分析了该方法的基本原理和生长过程,然后从晶体生长热力学和动力学两方面总结了该方法的研究进展,并归纳了该方法的优势,最后分析了TSSG法生长SiC单晶技术在未来的研究重点和发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号