首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The objective of this study was to characterize the fractionation profile of casein hydrolysates obtained with polysulfone hollow fiber ultrafiltration membranes. The two-step ultrafiltration process developed by Turgeon and Gauthier [J. Food Sci., 55 (1990) 106] was used: a caseinate solution was submitted to proteolysis with chymotrypsin or trypsin, and the reaction mixture (RM) was subsequently ultrafiltered using a 30 kDa (MWCO) hollow-fiber polysulfone membrane. The total hydrolysate permeating from this first step was further fractionated using a 1 kDa (MWCO) membrane, producing the mixture of polypeptides (retentate) and the amino acid fraction (permeate). The effect of enzyme specificity and of membrane retentivitiy on the total composition (total nitrogen, fat, lactose, minerals) and amino acid profile of the fractions was studied. The overall composition of the fractions was not significantly affected by the nature of the enzyme but the degree of hydrolysis and the molecular weight distribution profile analyses showed a marked effect of the enzyme specificity, with trypsin giving a larger proportion of small peptides (< 200 Da) in the mixture of polypeptides. Amino acid profile analyses provided useful information on the phenomena governing the fractionation of amino acids with a polysulfone membrane: (1) the target amino acids of the enzyme are concentrated in the permeate as a result of their presence in all peptides produced by hydrolysis, (2) polar amino acids are retained by the membrane, (3) non-polar amino acids are not selectively rejected by the membrane. Our results suggest that the charge/hydrophobicity balance of the peptides produced is the predominant factor determining the fractionation of casein hydrolysates.  相似文献   

2.
Mixed matrix membranes (MMMs) have received worldwide attention for natural gas purification due to their superior performance in terms of permeability and selectivity. The zeolitic imidazole framework-8 (ZIF-8) blended polysulfone (PSf) membranes have been fabricated for natural gas purification. ZIF-8 was selected due to its low cost, remarkable thermal and chemical stabilities, and tunable microporous structure. The neat PSf hollow fiber membrane and mixed matrix hollow fiber membranes incorporated with the various ZIF-8 loadings up to 1.25% were fabricated. The prepared membranes were evaluated using field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and gas separation performance. The low loading of ZIF-8 nanoparticles to the MMM improved thermal stability and glass transition temperature and yielded low surface roughness. MMMs were tested using pure gases with a significant improvement of 36% in CO2 permeability and 28% in CO2/CH4 selectivity compared to the neat membrane. However, the high ZIF-8 loading reduced the separation performances. Moreover, CO2/CH4 selectivity decreased at elevated pressure (8 and 10 bar) due to CO2-induced plasticization. Previously, the incorporation of ZIF-8 particles has primarily been subjected to the fabrication of flat sheet membranes, whereas this work focused on hollow fiber membranes which are rarely investigated. Hence, the promising results obtained at low feed pressure in this study demonstrated the potential of ZIF-8 based hollow fiber membrane for natural gas purification.  相似文献   

3.
4.
A series of hyperbranched polyesters (HBPEs) using trimethylolpropane (TMP) as a core were synthesized via an esterification reaction, and the molecular weights of these HBPEs were 1600, 2260, 3370, and 5170 g/mol, respectively. Then, these HBPEs were added into dope solutions to prepare PSf hollow fiber membranes via a wet‐spinning method. When the HBPE molecule weight increased from 1600 to 5170 g/mol, the initial viscosities of the PSf–HBPE–PEG400–DMAc dope solutions increased, and the shear‐thinning phenomenon of these dope solutions became increasingly obvious. When these dope solutions were immersed into the deionized water, the demixing rate increased with an increase in the HBPE molecule weight at first and then decreased; this results in the increase of membrane porosity and the coexistence of finger‐like and sponge‐like structures. With the addition of HBPE, the start pure water contact angle and the mean effective pore size of the membranes decreased, and the Jw increased. For the mechanical properties of the membranes, the breaking strength and the elongation of the membranes also increased. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Boron-doped diamond hollow fiber membrane (BDD–HFM) was fabricated as a novel type of porous conductive diamond. BDD–HFM was obtained by deposition of BDD polycrystalline film onto a quartz filter substrate consisting of quartz fibers, followed by etching of the substrate in HF/HNO3 aqueous solution. Cross-sectional scanning electron microscope (SEM) observation showed the inner diameter and wall thickness of the BDD hollow fibers were in the range of 0.4–2 and 0.2–2 μm, respectively. The BDD–HFM electrode exhibited a relatively large double-layer capacitance (ca. 13 F g−1) in 0.1 M H2SO4. Electrochemical AC impedance properties were simulated using an equivalent circuit model containing a transmission line model, which indicated characteristics of a porous electrode material.  相似文献   

6.
Membrane formation from poly(bisphenol-A sulfone)/poly(vinyl pyrrolidone)/dimethylacetamide/water systems by phase inversion process using immersion–precipitation technique was investigated. The initial precipitation rate was determined from light transmission experiments and the membranes morphologies were observed by scanning electron microscopy (SEM). These results were used to explain an observed oscillatory behavior in macrovoid occurrence, as well as to identify the region where spinodal demixing dominates the early stages of the phase inversion process. It is proposed as a qualitative model dividing the solution in three different layers during the polymer solution mass exchange with the coagulation bath. Each layer is associated with different precipitation kinetics leading to distinct morphologies. The model assumes that the macrovoids development is a function of the resistances created by precipitation kinetics of former layers.  相似文献   

7.
The overall objective of the present study was to characterize the effect of operating a submerged air sparged membrane system over a wide range of operating conditions (i.e. sub- and super-critical flux conditions) on the extent and mechanisms of membrane fouling during drinking water treatment. The sub- and super-critical flux conditions considered were generated by varying the operating permeate flux, the bulk cross-flow velocity, the flow characteristics (i.e. with or without air sparging) and the configuration of the membrane modules.  相似文献   

8.
Oxygen ion conducting Ba0.5Sr0.5Co0.8Fe0.2O3−δ hollow fiber membranes with o.d. 1.15 mm and i.d. 0.71 mm were fabricated using a sequence of extrusion, gelation, coating and sintering steps. The starting ceramic powder was synthesized by combined EDTA–citrate complexing followed by thermal treatment at 900 °C. The powder was then dispersed in a polymer solution, and extruded through a spinerette. After gelation, an additional thin coating of the ceramic powder was applied on the fiber, and sintering was carried out at 1190 °C to obtain the final ceramic membrane. The fibers were characterized by SEM, and tested for air separation at ambient pressure and at temperatures between 700 and 950 °C. The maximum oxygen flux measured was 5.1 mL/min/cm2 at 950 °C.  相似文献   

9.
Separation of ingredients in bonito extract was studied by a composite UF membrane of ceramic/sulfonated polysulfone (SPS). The bonito extract mainly contained inosine-5′-monophosphate (IMP), glutamic acid as a tasty ingredient and hypoxanthine, histidine as a putrefaction ingredient. The composite membrane showed a high rejection against negatively charged IMP, but permeated non-charged hypoxanthine. This is because of the negatively charged repulsion between the membrane and the solute. The permeation of amino acid could be controlled using the difference in isoelectric points of amino acids themselves. When the amino acid solution was filtrated by the composite membrane at pH 7, glutamic acid was rejected and no histidine was rejected. The charges of composite membrane were found to have an effect on the separation of ingredients in bonito extract.The composite membrane was stable within a wide pH range from 3 to 9, and had a thermal durability under 353 K.  相似文献   

10.
Gas membranes supported by microporous hollow fibers have been used to concentrate bromine from a variety of brines similar to seawater. The bromine transport is governed by diffusion in the brine, and hence is almost independent of membrane properties except the surface area per volume. In some cases, this type of membrane can be an alternative to packed towers, simultaneously carrying out both absorption and stripping.  相似文献   

11.
The mass transfer characteristics of gas permeable, hollow fiber membranes in a liquid jet mixed reactor are studied. A membrane module, operated in the sealed-end mode, was pressurized with oxygen at the base of the fibers and centered within a submerged jet discharge. Unlike conventional membrane module designs, this configuration did not have the hollow fibers enclosed within a tubular shell. The membranes were unconfined and free to move within the generated flow field. This design is especially well suited for use in waters containing high solid concentrations. The membranes have a greater degree of freedom for movement and are therefore less likely to become fouled due to solids being lodged within the fiber bundle. Mass transfer rates were measured over a practical range of physical and process parameters. A mass transfer correlation for the unconfined configuration is presented and the transfer performance of this configuration is compared with conventional membrane contactor designs.  相似文献   

12.
Asymmetric carbon hollow fiber membranes were prepared by pyrolysis of an asymmetric polyimide hollow fiber membrane, and their mechanical and permeation properties were investigated. The carbon membrane had higher elastic modulus and lower breaking elongation than the polyimide membrane. Permeation experiments were performed for single gases such as H2, CO2, and CH4, and for mixed gases such as H2/CH4 at high feed pressure ranging from 1 to 5 MPa with or without toluene vapor. The permeation properties of the carbon membranes and the polyimide membrane were compared. There was little change in the properties of the carbon membranes with a passage of time. The properties were hardly affected by the feed pressure, whether the feed was accompanied with the toluene vapor or not, because the carbon membranes were not affected by compaction and plasticization.  相似文献   

13.
Inorganic hollow fiber membranes were prepared by spinning a polymer solution containing suspended aluminum oxide (Al2O3) powders to a hollow fiber precursor, which is then sintered at elevated temperatures. In spinning these hollow fiber precursors, polyethersulfone (PESf), N-methyl-2-pyrrolidone (NMP), and polyvinyl pyrrolidone (PVP) were used as a polymer binder, a solvent, and an additive, respectively. The inorganic hollow fiber membranes prepared were characterized using scanning electron microscope (SEM), gas permeation techniques Coulter porometer, and gravimetric analysis. Some primary factors affecting the structure and performance of the membranes such as the sintering temperature and the ratio of the aluminum oxide to the PESf polymer binder were studied extensively. The prepared inorganic membranes show an asymmetric structure, which is similar to the conventional polymeric membranes prepared from the same phase-inversion technique. The inorganic hollow fiber membrane with a higher porosity and better mechanical strength could be prepared by blending the spinning solution with a smaller amount of aluminum oxide powder.  相似文献   

14.
Microporous polyethylene hollow fiber membranes (EHF-1 and EHF-2) were subjected to solvent treatment, and the effects of this treatment on membrane morphology and permeating properties were studied. Membranes treated with various organic solvents exhibited enhanced permeability, enlarged pore size, and increased shrinkage in the longitudinal direction. These phenomena were found to depend on the surface tension of the solvent: the higher the surface tension of the solvent, the larger the change in morphology and permeation of the membrane. A mechanism to account for the effects of solvent treatment on the morphology of the membrane is proposed taking into consideration the influence of the type of solvent used for treatment. The enhanced morphological and permeation changes are ascribed to the formation of liquid bridges between two microfibrils of the membrane during drying followed by the deformation and adhesion of the adjacent microfibrils based on the surface tension of the solvent.  相似文献   

15.
Modeling of hollow fiber asymmetric membrane modules can provide useful guidelines to achieve desirable separations of gas mixtures. In this work the performance of a countercurrent flow separator was analyzed through a parametric study of the most important system variables as functions of basic design and operational parameters. Results refer to CO2–N2 separation from power station flue gases as a typical, potential process. The appropriate model equations were solved by orthogonal collocation to approximate differential equations, and to solve the resulting system of non-linear algebraic equations by the Brown method. This technique compared to other applied computational procedures minimized the computational time and effort and improved solution stability. This is very important if the pressure and concentration profiles along the permeator, both in the residue and the permeate streams, need to be determined. These profiles influence strongly the permeator performance and, under certain conditions such as moderate and high feed pressure, they may result in lower than expected permeate purity. The simulation results also indicate that the role of the basic design parameters may be of equal if not higher importance to membrane selectivity. Thus industrial permeator performance, as it is expressed by stage cut and permeate purity, is not very sensitive to membrane permselectivity beyond a modest value of 40–50, especially at moderate and high (15–20 bar) feed pressures. A desirable gas separation may then be achievable with a reasonably permeable, albeit not very selective membrane, provided that design and operating variables are selected appropriately.  相似文献   

16.
Permeation of chromatin isolated from human HeLa S3 cells and histone-DNA complex through regenerated cellulose hollow fibers was investigated as a model study of DNA removal for drug manufacturing using membrane technology. It was found that the permeation of histone-DNA and chromatin through the membranes having a mean pore diameter of 15 nm was substantially lower than the permeation of free DNA which did not complex with proteins based on the concentration determination of the feed and permeate solutions using UV spectroscopy. Direct observation to determine the existence of chromatin and histone-DNA complex in the permeate solution was also performed using atomic force microscopic imaging. No chromatin and chromatin-like structures were found in the examination of 10 areas of 1.0×1.0 μm on the mica which had been adsorbed from the solution permeated through the membranes. Thus, the membranes having a mean pore diameter of 15 nm most likely reject the chromatin and histone-DNA complex that are observed to have an apparent width of 25–30 nm based on atomic force microscopic imaging.  相似文献   

17.
18.
Plasticization of gas separation membranes by carbon dioxide permanently alters their performance and increases the possibility of membrane failure. This is amplified in ultra-thin composite membranes, where the active polymeric layer is less than 2 μm. Here, the plasticization influence of CO2 is measured on ultra-thin polysulfone composite membranes for a range of active layer thicknesses, at four temperatures. The resulting permeability–pressure isotherms demonstrate plasticization occurs for all thicknesses at pressures lower than has been reported for dense membranes. These isotherms were quantitatively fitted with an expanded dual-sorption model that takes into account plasticization of the membrane. The plasticization potential of CO2 for polysulfone was found to increase with reduced active layer thickness. Similarly, the plasticization potential of CO2 was found to decrease with temperature. These results are consistent with similar research that shows that thin films behave differently to dense membranes.  相似文献   

19.
The primary aim of this paper was to develop a more effective and economical procedure for cleaning polyethylene hollow fiber microfiltration membranes that have been used for removing oil from contaminated seawater. Alkaline cleaning showed higher recovery of operating cycle time but lower permeate flux recovery than acid cleaning. The combination of both alkaline and acid cleaning agents gave the best operating cycle time and flux recoveries (e.g. 96% and 94%, respectively). As the cleaning agent soaking time was reduced, the actual operating cycle time was reduced. However, the ratio of operating time/chemical cleaning time increased as the soaking time was reduced. The soaking time was recommended to be as short as possible (8–10 h) in the design of small capacity plants and 30 h or higher in case of large capacity plants. SEM analysis showed that in case of alkaline cleaning, most of the pores remained covered with a foulant layer, resulting in low flux recovery. The SEM results of acid cleaned membranes showed more complete removal of the foulant layer from the pores resulting in better flux recovery. Surface analysis of membranes cleaned with combined acid/base agents showed the best results. A membrane surface similar to the original one was obtained. The long-term objective is to increase the understanding of membrane fouling phenomena, preventive means and membrane cleaning processes as it applies to the clean-up and desalination of oil contaminated seawater.  相似文献   

20.
Using multilayer composite hollow fiber membranes consisting of a sealing layer (silicone rubber), a selective layer (poly(4-vinylpyridine)), and a support substrate (polysulfone), we have determined the key parameters for fabricating high-performance multilayer hollow fiber composite membranes for gas separation. Surface roughness and surface porosity of the support substrate play two crucial roles in successful membrane fabrication. Substrates with smooth surfaces tend to reduce defects in the selective layer to yield composite membranes of better separation performance. Substrates with a high surface porosity can enhance the permeance of composite membranes. However, SEM micrographs show that, when preparing an asymmetric microporous membrane substrate using a phase-inversion process, the higher the surface porosity, the greater the surface roughness. How to optimize and compromise the effect of both factors with respect to permselectivity is a critical issue for the selection of support substrates to fabricate high-performance multilayer composite membranes. For a highly permeable support substrate, pre-wetting shows no significant improvement in membrane performance. Composite hollow fiber membranes made from a composition of silicone rubber/0.1–0.5 wt% poly(4-vinylpyridine)/25 wt% polysulfone show impressive separation performance. Gas permeances of around 100 GPU for H2, 40 GPU for CO2, and 8 GPU for O2 with selectivities of around 100 for H2/N2, 50 for CO2/CH4, and 7 for O2/N2 were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号