首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium dodecyl sulfate (SDS) aqueous solutions were used as gelation media in the preparation of polyethersulfone (PES) membranes. The casting solution composition was the same for all the tested membranes. The temperatures of gelation media were 4 and 20°C. The concentration of SDS was changed from 0 to 3.0 g/l at 4°C and 0 to 1.6 g/l at 20°C.The surface tension of the gelation media was measured by drop weight method and the electrical conductivities were also determined. The membranes were characterized by transport parameters obtained from separation experiments and roughness parameters, obtained by the atomic force microscopic (AFM) technique.The molecular weight cut-off (MWCO) values of the studied membranes were found to be between 9 000 and 88 000 Da for membranes gelled at 4°C, and between 28 000 and 85 000 Da for membranes gelled at 20°C. The pore sizes were found to be between 3.04 and 10.73 nm for the membranes gelled at 4°C and between 4.48 and 10.74 nm for membranes gelled at 20°C, respectively. In general, both MWCO and pore size decreased with an increase of SDS concentration in gelation media when the concentration was below critical micelle concentration (CMC) and increased with an increase with SDS concentration when the concentration was above CMC. Images of membrane surfaces, taken by AFM, showed that the size of nodules and depressions decreased with a decrease in pore size. The roughness of membranes increased with an increase in pore size and MWCO.  相似文献   

2.
Inorganic nanofiltration membranes were fabricated from silica–zirconia composite colloidal sol (molar ratio Si/Zr=9/1) using a sol–gel process. Molecular weight cut-off (MWCO) was successfully controlled between 200 and 1000 Da by regulating the colloidal diameters of sol solutions in the final coating stage. The pure water permeabilities ranged from 0.15×10−11 to 1.5×10−11 m3 m−2 s−1 Pa−1. Pore size and pore size distribution were estimated based on the dynamic method of humid air permeation, and found to be from 1.0 to 2.9 nm. The MWCO obtained from NF experiments using neutral organic solutes corresponds well with the pore diameters estimated from the dynamic permeation method. Silica–zirconia membranes were found to be stable in aqueous solution for periods in excess of four months.  相似文献   

3.
The permeation of orange G (MW 452), methylene blue (MW 319), and bovine albumin (MW 68000), through thermo-responsive ion track membranes was studied. For this purpose, poly-N-isopropylacrylamide (poly-NIPAAm) hydro-gel was chemically grafted onto single/multi-pore ion track membranes of poly(ethylene terephthalate) (PET).The local transport properties were studied by measuring the electrical current through single pore membranes. It was found that the incorporation of the hydro-gel into the pores does not influence the phase transition temperature. The switching of the responsive membrane was reversible over 200 switching cycles applied during 30–50 days. The closed pores represent a physical barrier excluding organic molecules larger than 2±0.2 nm. This fact is based on the size exclusion method using mixtures of polyethylene glycol (PEG) of various molecular weights and 0.1 N potassium chloride.The global transport properties were studied using multi-pore membranes with 5×105 to 5×107 pores per cm2 and pore diameters between 0.6 and 4.5 μm. For bovin insulin permeation in the open state was 35 times above the level of the closed state corresponding to the detection limit of the used permeation cell. In the open state the transport rates of the solvent and the solute were identical implying that the free space in the open pores was larger than the size of the permeating bovine albumin molecules (about 7.3 nm). The linear relation between pressure and mass current enabled to determine an effective open-pore diameter between 0.2 and 1 μm. In the open state, the membrane this is not molecular selective.  相似文献   

4.
Two polyvinylidenefluoride microfiltration membranes (GVHP and GVWP: Millipore, Bedford, MA) with a nominal pore size of 0.22 μm were challenged with mixed microbial cultures present in Milli-Q™ water and in secondary effluent, and with a Gram-negative model bacterium, SW8, to investigate bacterial passage. Total bacterial counts measured microscopically using the DNA fluorochrome DAPI revealed that the small bacteria in Milli-Q™ water passed MF membranes totally. The model bacterium, SW8 and bacteria from secondary effluent were mostly retained with log reduction values (LRV) of 4 and 3.5, respectively. Transmembrane pressure did not influence the levels of bacterial passage significantly. Pore size effects were investigated with track-etched membranes (Poretics™: Osmonics, Minnetonka MN) with nominal pore sizes of 0.2, 0.1 and 0.05 μm. The LRV of 0.2 μm membranes for SW8 and secondary effluent cells was 3 and 1.5, respectively (total counts). Both membranes with pore sizes smaller than 0.2 μm acted similarly, they still transmitted secondary effluent cells with LRV 2 log higher than 0.2 μm membranes, but for SW8 only 50% higher. In contrast to total count results, removal of bacteria was 100% with all membranes when assessed by cultureable counts, i.e. numbers of bacterial colonies recovered on R2A agar plates. Transmitted bacteria failed to grow on standard basal microbiology media most probably because they were injured during passage through the membranes to the extent that recovery in laboratory media did not occur. However, tests with CTC, an indicator of cell viability, indicated that approximately half of the cells of SW8 which passed the membranes had what appeared to be functional electron transfer chains in their membranes. All membranes had a pore size distribution which included pores larger than the nominal value. Field emission scanning electron microscopy (FESEM) provided evidence for entrapment of bacteria within the membrane matrix.  相似文献   

5.
A mesoporous γ-Al2O3 membrane was produced by the sol gel dipping technique, followed by a thermal treatment (calcination and sintering). Different sintering temperatures were applied, which led to membranes with an average pore diameter ranging from 8.7 to 3.4 nm, the latter one corresponding to a MWCO of 900 Da.Salt retention was very much dependent on the pH of the solution as such membranes have an amphoteric character. Minimal salt retention was found at the isoelectric point (pH 7.5). Experiments were carried out with NaCl, MgCl2 and LaCl3 at different concentrations and in both single salt solutions and mixtures. The results are interpreted in terms of Donnan exclusion and in terms of the formation of an electrical double layer in the pores.Dynamic corrosion tests showed that some corrosion occurs at a pH of 2 or lower.  相似文献   

6.
《Fluid Phase Equilibria》2005,231(2):138-149
Reactive canonical Monte Carlo (RCMC) method was performed to simulate the chemical reaction equilibrium of ammonia synthesis in two important porous materials: MCM-41 pores and pillared clays. First, our results were compared with those in slit pores in the literature. Then, the effect of other factors such as pore size, pressure and temperature on the chemical equilibrium was investigated. A parameter of the absolute increase of ammonia mole fraction in the pores against that in the bulk phase, Δabs, is introduced to describe the effect of confinement on the chemical equilibrium. The yield of ammonia increases with the decrease of pore size, but this increase becomes pronounced at pore sizes of 1.5 nm for MCM-41 pores and 1.02 nm for pillared clays. The yield of ammonia also increases with pressure. In addition, the maximum ammonia mole fraction is attained at 100 bar and 573 K in both MCM-41 pores and pillared clays. When the feed mole ratio of N:H of the bulk phase declines from 4:13 to 4:15, the yield of ammonia in the pore phase also decreases. In addition, the effect of porosity in pillared clays on the chemical equilibrium was simulated.  相似文献   

7.
The effect of sulfonated poly(ether ether ketone) (SPEEK) in membrane formation and separation properties has been investigated in polysulfone(PSU)/SPEEK/N-methyl-2-pyrrolidinone (NMP) systems. Charged ultrafiltration/nanofiltration membranes were obtained reliably in the range of 0.5–5 wt.% SPEEK in the polymer blend. All PSU/SPEEK blend membranes had substantially higher water flux, salt rejection, porosity and greatly reduced particle adhesion compared to the PSU base membrane. Further, all of these properties varied systematically with variation of SPEEK content. Reproducibility and stability of the membrane properties was excellent. Pore sizes determined from dextran retention data and AFM measurements showed reasonable agreement. Membranes with 5 wt.% SPEEK demonstrated excellent overall properties. Such membranes had very high permeability, 22.6±1.6×10−11 m3 s−1 N−1, 0.999 fractional rejection of 4000 Da dextran, 0.65 rejection of 0.001 M NaCl, and only 0.75 mN m−1 adhesion of a 4 μm silica particle. Such membranes are very promising for scale-up of production and testing on real process streams.  相似文献   

8.
We have demonstrated the effect of shear rate on the outer surface morphology of polyethersulfone (PES) hollow fiber ultrafiltration (UF) membranes by an atomic force microscope (AFM). A digital instrument (DI) AFM was used to reveal the surface morphology of hollow fiber membranes prepared with varying shear rates from 1305 to 11,066 s−1. A tapping mode was operated for studying the polymeric membranes when AFM was applied to image the surface of a fiber in air. AFM images of the outer surface have revealed that the nodules in the outer skin appeared to be randomly arranged at low shear rates but formed bands that were aligned in the direction of dope extrusion when the shear rate increased. Both nodule sizes in the fiber spinning and transversal directions decreased with increasing shear rate possibly because of chain disentanglement and thermodynamically favored. This result has not been reported so far. The analysis of AFM images showed that the roughness of the outer surface of hollow fiber UF membranes in terms of Rms, Ra and Rz decreased with an increase in shear rate. The pure water flux of the membranes was nearly proportional to the mean roughness and higher mean roughness resulted in lower separation of membranes. AFM data also imply that there was a certain critical value of shear rate around 3585 s−1, the roughness decreased significantly with an increase in shear rate below 3585 s−1 and almost leveled off or in a much slower pace above this shear rate.  相似文献   

9.
Asymmetric polyimide membranes were fabricated from casting solution of 18 wt% polyamic acid and 1.3–20 wt% additive agent in dimethylacetamide at 343 K, with 1 min evaporation time, followed by a cyclization process of thermal treatment in a bath of dioctyl sebacate under N2 in three steps: 1 h at 373 K, 1 h at 473 K, 1 h at 573 K. The effect of additive agents and their quantity on the molecular weight cut-off (MWCO) performance of the asymmetric aromatic polyimide membrane were examined. By changing a sort of additive agents, the MWCO of the fabricated aromatic polyimide asymmetric membranes can be adjusted in the range of 400–650 daltons. By changing amount of additive agents, MWCO of the fabricated aromatic polyimide asymmetric membranes remain almost constant at the value of approximately 400 daltons for pyrene, and increased from 500–650 daltons for polystyrene.  相似文献   

10.
This article studies the effect of 47 kHz ultrasonic (US) waves on polymeric membranes immersed in an aqueous bath. The membranes under study are made from three different polymers: polyethersulfone (PES), polyvinylidenefluoride (PVDF) and polyacrylonitrile (PAN) and present various molecular weight cut-off (MWCO). The evolution of the polymeric structure exposed to US was followed by the measurement of the water permeability and the Akx parameter which represents the ratio of surface porosity to thickness. Results showed that important variations occurred on certain membranes after irradiation. In addition, microscopic imaging using field emission electron scanning microscopy (FESEM) was performed on irradiated membranes in order to visualize the nature of the degradation. An image analysis method gives the evolution of the pore density, porosity and pore size distribution of a homogeneous area of this membrane before and after irradiation.It has been shown that, over the three materials tested, only the PES is affected by the ultrasonic treatment over all its surface, whereas the others present no significant change in the measured parameters except the PAN (50 kDa) and PVDF (40 kDa) membranes whose edges are affected. In conclusion, in spite of their great efficiency in enhancing filtration processes, ultrasonic waves have to be used with care as the polymeric material itself is sensitive to the ultrasonic waves at the chosen frequency.  相似文献   

11.
In this work, formation of porous TiOx layers and theirs corrosion behavior were studied. Application of H3PO4 electrolytes results in porous TiOx formation. The process is enhanced by small amount of HF content in the electrolyte. The HF results in higher current density, enhancing dissolution. Small 0.5% HF concentration results in nanopores formation, with pore diameter of about 45 nm. Increase of HF concentration up to 10% results in pores with average diameter of about 5.2 μm. An increase of etching time results in larger pore diameter, but between large 2–5 μm diameter pores smallest ones were observed with diameter below 200 nm. In the initial etching process a remnants of the flat surface are presents with initial cracks in the surface, indicating places for growth of the pores.The TiOx layers can be used as a biomaterial. The corrosion behavior of the layer investigated in Ringer’s solution, revealed an excellent corrosion resistance, with respect to pure Ti.  相似文献   

12.
The thermal treatment of coal causes a development of internal porosity of the resultant char due to the changes in the coal char pores, i.e. the opening of original closed pores, the formation of new pores, and an increase in pore size of existing and newly formed pores. Furthermore, the porosity formed during de-volatilisation causes changes in pore structural characteristics such as: density, pore size distribution, total open pore volume, porosities and average pore diameter. Much research has been conducted in this area, but was mainly focused on fine particle sizes (<1 mm) and vitrinite-rich coals, particularly from the Northern hemisphere. The objective of this study was to obtain an understanding of both the macro- and micro-porosity development within the de-volatilisation zone of a packed bed consisting of lump inertinite-rich coal (75 mm × 6 mm) from the Highveld coalfield in South Africa. This was achieved by generating samples in an air-blown packed bed reactor and conducting proximate, CO2 reactivity, mercury intrusion porosimetry, and BET CO2 surface area analyses on the dissected coal/char/ash samples.From mercury-intrusion porosimetry results obtained for the de-volatilisation reaction zone of the reactor, it was found that although the percentage macro-porosity and average pore diameter increased by 11% and 77% respectively (which confirms pore development), that these developments do not enlarge the surface area, and thus has no significant contribution on the reactivity of the coal/char. On the other hand, the micro-pore surface area, pore volume and pore diameter were all found to increase during de-volatilisation, resulting in an increase in the coal char reactivity. The micro-porosity is thus generally responsible for the largest internal surface area during de-volatilisation, which enables increased reactivity. The CO2 gasification reactivity (at 1000 °C) increased from 3.8 to 4.5 h−1 in the first stage of de-volatilisation, and then decreased to 3.8 h−1 in a slower de-volatilisation regime. This is due to the maximum pore expansion and volatile matter evolution reached at 4.5 h−1, before coalescence and pore shrinkage occur with a further increase in temperature within the slower de-volatilisation region of the reactor. During de-volatilisation there is thus both an increase and decrease in reactivity which might suggest two distinct intermediate zones within the de-volatilisation zone.  相似文献   

13.
Through-hole nanotubular membranes of anodic TiO2 were successfully prepared through the removal of the barrier layer using potential shock. The abrupt increase in the potential at the end of the anodization allowed the pores to homogenously open in the barrier layer within 10 s. The pore opening corresponded to the breakdown of the center of the barrier layer through the massive diffusion of the F? ions, which were triggered by the significantly high potential (here, > 80 V). The potential shock voltage and time were optimized based on the breakdown mechanism. This method is immediately applicable for preparing the through-hole membranes of anodic TiO2 because it rapidly produces homogenous pore openings without the need for any complicated processes or dangerous chemicals.  相似文献   

14.
The influence of membrane microstructure on the transport properties of ZSM-5 membranes was investigated. Two zeolite membranes with (1 0 1)- and (0 0 2)-orientations were grown layer-by-layer onto seeded alumina support. The membrane morphology was kept constant as well as the shape of the individual crystal grains that made up the polycrystalline zeolite membrane layer. The membrane microstructure were characterized and quantified using six microstructural parameters that include membrane thickness (τ), grain size (d), grain morphology (M), zeolite population (N), crystal intergrowth (Ic) and film orientation. Eight different gases including He, H2, N2, Ar, CH4, n-C4H10, i-C4H10 and SF6 were used as molecular probes to investigate the transport processes through the membrane of different thicknesses. By maintaining a comparable non-zeolite flow, it was demonstrated that the (1 0 1)- and (0 0 2)-oriented ZSM-5 membranes have comparable transport resistance. Also, the results of the multi-thickness comparison using the different sized molecular probes indicate a strong similarity in the transport mechanism and diffusion pathway through these two membranes. The experiment suggests that the grain boundary is the main non-zeolite diffusion pathway in the membrane and their elimination through grain growth can result in better membrane performance.  相似文献   

15.
Densities ρ, speeds of sound u, and refractive indices nD were measured from T = (278.15 to 343.15) K. Dynamic viscosities η were measured from T = (293.15 to 323.15) K. Surface tensions σ were determined from T = (288.15 to 313.15) K. The physical properties data were measured at atmospheric pressure. The coefficients of thermal expansion αp of the ionic liquids were calculated from the experimental values of the density at several temperatures. The Parachor method was used to predict the densities, the refractive indices, and the surface tensions of the ionic liquids, and a comparison between experimental and predictive values was made at T = 298.15 K.  相似文献   

16.
The densities at T = (293.15, 298.15, 303.15, 308.15, 310.15, and 313.15) K and sound velocities at T = (298.15 and 310.15) K have been measured for pentaerythritol in pure water and in (1, 5, and 10) wt% aqueous solutions of sodium and magnesium chloride. From these data apparent molar volumes, VΦ, and the apparent molar isenotropic compressibilities, KS,Φ, of the polyol have been determined. The limiting apparent molar quantities and corresponding transfer parameters were also obtained and discussed in terms of various solute–solvent and solute–cosolute interactions.  相似文献   

17.
The tert-butyl alcohol (TBA) and dimethyl sulfoxide (DMSO) are two small molecules geometrically very similar, but having different polar groups. Taking into account the intermolecular interactions in the TBA/H2O and DMSO/H2O systems, especially in the water-rich region of concentration, the ultrasonic speeds (high accuracy resonance method at the frequency 7.5 MHz) and densities in pseudo-binary mixtures of the system: (TBA + H2O + DMSO) with the ratio (TBA + DMSO)/H2O = 1/25 have been measured. From these data, various thermodynamical parameters such as adiabatic compressibility, molar volume, thermal expansivity, and the deviation from reference system have been calculated. In addition, the isobaric molar heat capacity to convert adiabatic compressibility to the isothermal one has been measured. All these parameters have been discussed to explain solute–solvent and solute–solute interactions, especially the effect of the complexation process between TBA and DMSO molecules. The composition dependence of these deviations functions was interpreted in the light of the mixing schemes in the aqueous solutions of TBA and DMSO.  相似文献   

18.
Ternary mutual diffusion coefficients measured by Taylor dispersion method (D11, D22, D12, and D21) are reported for aqueous solutions of KCl + theophylline (THP) at T = 298.15 K at carrier concentrations from (0.000 to 0.010) mol · dm?3, for each solute. These diffusion coefficients have been measured having in mind a better understanding of the structure of these systems and the thermodynamic behavior of potassium chloride and theophylline in solution. For example, from these data it will be possible to make conclusions about the influence of this electrolyte in diffusion of THP and to estimate some parameters, such as the diffusion coefficient of the aggregate between KCl and THP.  相似文献   

19.
Polymer membranes with pores with radii in the range of several 10–100 nm were formed by irradiating polyimide foil with highly energetic heavy ions and etching the latent ion tracks with hypochlorite. The aerial density of the pores could be chosen up to an upper limit of 108 pores cm?2, at which too many pores start to overlap. The straight cylindrical pores were tested for their gas permeation and gas separation performance. With a gas mixture of CO and CO2 as model system, gas chromatographic measurements showed that CO penetrates faster through the membrane than CO2, leading to gas separation. This is possible because the mean free path of the molecules is in the order of the pore radius, which is in the transition flow region close to molecular flow conditions.  相似文献   

20.
The experimental data of density (ρ) and sound velocity (u) in the temperature range (275.15 to 293.15) K have been obtained for the systems (dioxane + water), (dimethylformamide + water), (tetrahydrofuran + water), and (acetonitrile + water). The specific heat (Cp) data for the above systems have been obtained at T = 279.15 K. The data obtained are used to calculate the derived parameters of adiabatic compressibility (βS), at T = 275.15 K to T = 283.15 K, isothermal compressibility (βT), and internal pressure (Pi) at T = 279.15 K for different concentrations. The solute properties: apparent molar volume (ϕV), apparent molar expansivity (ϕE), and apparent molar compressibility (ϕKS) have been studied and the limiting values for these properties are reported. The variation in apparent molar properties with concentration and the corresponding temperature and pressure effects are discussed in terms of hydrophobic hydration (–H bonding interaction) and hydrophobic interaction (non-polar group solute–solute association in water). It is noted that the internal pressure of solutions is quite insensitive in the region of solute–solute association, while its variation with concentration in the dilute region is sensitive in contrast to the aqueous alcohol solutions. The molecular interactions also exhibit individualistic behaviour and are much dependent on structural alterations in water structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号