首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Harrison  P.G. 《Queueing Systems》2002,41(3):271-298
We obtain the sojourn time probability distribution function at equilibrium for a Markov modulated, multi-server, single queue with generalised exponential (GE) service time distribution and compound Poisson arrivals of both positive and negative customers. Such arrival processes can model both burstiness and correlated traffic and are well suited to models of ATM and other telecommunication networks. Negative customers remove (ordinary) customers in the queue and are similarly correlated and bursty. We consider both the cases where negative customers remove positive customers from the front and the end of the queue and, in the latter case, where a customer currently being served can and cannot be killed by a negative customer. These cases can model an unreliable server or load balancing respectively. The results are obtained as Laplace transforms and can be inverted numerically. The MM CPP/GE/c G-Queue therefore holds the promise of being a viable building block for the analysis of queues and queueing networks with bursty, correlated traffic, incorporating load balancing and node-failures, since the equilibrium behaviour of both queue lengths and response times can be determined in a tractable way.  相似文献   

2.
研究带反馈的且具有正、负两类顾客的M/M/1/N工作休假排队模型.工作休假策略为空竭服务多重工作休假.负顾客一对一抵消队首正在接受服务的正顾客(若有),若系统中无正顾客时,到达的负顾客自动消失,负顾客不接受服务.完成服务的正顾客以概率p(0相似文献   

3.
本文研究带反馈的具有正、负两类顾客的M/M/1工作休假排队模型.工作休假策略为空竭服务多重工作休假.负顾客一对一抵消队尾的正顾客(若有),若系统中无正顾客时,到达的负顾客自动消失,负顾客不接受服务.完成服务的正顾客以概率p(0相似文献   

4.
研究带有反馈的具有正、负两类顾客的Geom/Geom/1离散时间休假排队模型.休假排队策略为单重休假,其中负顾客不接受服务,只起一对一抵消队首正在接受服务的顾客作用.完成服务的正顾客以概率σ(0≤σ≤1)等待下次服务,以概率σ离开系统.运用拟生灭过程和矩阵几何解方法得到队长的稳态分布的存在条件和表达式,进而求出系统队长稳态分布的随机分解.此外,我们利用了数值例子进一步反映参数对平均队长的影响.  相似文献   

5.
The arrival of a negative customer to a queueing system causes one positive customer to be removed if any is present. Continuous-time queues with negative and positive customers have been thoroughly investigated over the last two decades. On the other hand, a discrete-time Geo/Geo/1 queue with negative and positive customers appeared only recently in the literature. We extend this Geo/Geo/1 queue to a corresponding GI/Geo/1 queue. We present both the stationary queue length distribution and the sojourn time distribution.  相似文献   

6.
An MMBP/Geo/1 queue with correlated positive and negative customer arrivals is studied. In the infinite-capacity queueing system, positive customers and negative customers are generated by a Bernoulli bursty source with two correlated geometrically distributed periods. I.e., positive and negative customers arrive to the system according to two different geometrical arrival processes. Under the late arrival scheme (LAS), two removal disciplines caused by negative customers are investigated in the paper. In individual removal scheme, a negative customer removes a positive customer in service if any, while in disaster model, a negative customer removes all positive customers in the system if any. The negative customer arrival has no effect on the system if it finds the system empty. We analyze the Markov chains underlying the queueing systems and evaluate the performance of two systems based on generating functions technique. Some explicit solutions of the system, such as the average buffer content and the stationary probabilities are obtained. Finally, the effect of several parameters on the system performance is shown numerically.  相似文献   

7.
A retrial queue accepting two types of positive customers and negative arrivals, mixed priorities, unreliable server and multiple vacations is considered. In case of blocking the first type customers can be queued whereas the second type customers leave the system and try their luck again after a random time period. When a first type customer arrives during the service of a second type customer, he either pushes the customer in service in orbit (preemptive) or he joins the queue waiting to be served (non-preemptive). Moreover negative arrivals eliminate the customer in service and cause server’s abnormal breakdown, while in addition normal breakdowns may also occur. In both cases the server is sent immediately for repair. When, upon a service or repair completion, the server finds no first type customers waiting in queue remains idle and activates a timer. If timer expires before an arrival of a positive customer the server departs for multiple vacations. For such a system the stability conditions and the system state probabilities are investigated both in a transient and in a steady state. A stochastic decomposition result is also presented. Interesting applications are also discussed. Numerical results are finally obtained and used to investigate system performance.  相似文献   

8.
We consider Kelly networks with shuffling of customers within each queue. Specifically, each arrival, departure or movement of a customer from one queue to another triggers a shuffle of the other customers at each queue. The shuffle distribution may depend on the network state and on the customer that triggers the shuffle. We prove that the stationary distribution of the network state remains the same as without shuffling. In particular, Kelly networks with shuffling have the product form. Moreover, the insensitivity property is preserved for symmetric queues.   相似文献   

9.
G-networks are novel product form queuing networks that, in addition to ordinary customers, contain unusual entities such as negative customers which eliminate normal customers, and triggers that move other customers from some queue to another. Recently we introduced one more special type of customer, a reset, which may be sent out by any server at the end of a service epoch, and that will reset the queue to which it arrives into its steady state when that queue is empty. A reset which arrives to a non-empty queue has no effect at all. The sample paths of a system with resets is significantly different from that of a system without resets, because the arrival of a reset to an empty queue will provoke a finite positive jump in queue length which may be arbitrarily large, while without resets positive jumps are only of size + 1 and they occur only when a positive customer arrives to a queue. In this paper we review this novel model, and then discuss its traffic equations. We introduce the concept of stationary equivalence for queueing models, and of flow equivalence for distinct queueing models. We show that the flow equivalence of two G-networks implies that they are also stationary equivalent. We then show that the stationary probability distribution of a G-network with resets is identical to that of a G-network without resets whose transition probabilities for positive (ordinary) customers has been increased in a specific manner. Our results show that a G-network with resets has the same form of traffic equations and the same joint stationary probability distribution of queue length as that of a G-network without resets.  相似文献   

10.
Gelenbe et al. [1, 2] consider single server Jackson networks of queues which contain both positive and negative customers. A negative customer arriving to a nonempty queue causes the number of customers in that queue to decrease by one, and has no effect on an empty queue, whereas a positive customer arriving at a queue will always increase the queue length by one. Gelenbe et al. show that a geometric product form equilibrium distribution prevails for this network. Applications for these types of networks can be found in systems incorporating resource allocations and in the modelling of decision making algorithms, neural networks and communications protocols.In this paper we extend the results of [1, 2] by allowing customer arrivals to the network, or the transfer between queues of a single positive customer in the network to trigger the creation of a batch of negative customers at the destination queue. This causes the length of the queue to decrease by the size of the created batch or the size of the queue, whichever is the smallest. The probability of creating a batch of negative customers of a particular size due to the transfer of a positive customer can depend on both the source and destination queue.We give a criterion for the validity of a geometric product form equilibrium distribution for these extended networks. When such a distribution holds it satisfies partial balance equations which are enforced by the boundaries of the state space. Furthermore it will be shown that these partial balance equations relate to traffic equations for the throughputs of the individual queues.  相似文献   

11.
We consider a single server retrial queue with waiting places in service area and three classes of customers subject to the server breakdowns and repairs. When the server is unavailable, the arriving class-1 customer is queued in the priority queue with infinite capacity whereas class-2 customer enters the retrial group. The class-3 customers which are also called negative customers do not receive service. If the server is found serving a customer, the arriving class-3 customer breaks the server down and simultaneously deletes the customer under service. The failed server is sent to repair immediately and after repair it is assumed as good as new. We study the ergodicity of the embedded Markov chains and their stationary distributions. We obtain the steady-state solutions for both queueing measures and reliability quantities. Moreover, we investigate the stochastic decomposition law, the busy period of the system and the virtual waiting times. Finally, an application to cellular mobile networks is provided and the effects of various parameters on the system performance are analyzed numerically.  相似文献   

12.
Crowdsourcing is getting popular after a number of industries such as food, consumer products, hotels, electronics, and other large retailers bought into this idea of serving customers. In this paper, we introduce a multi-server queueing model in the context of crowdsourcing. We assume that two types, say, Type 1 and Type 2, of customers arrive to a c-server queueing system. A Type 1 customer has to receive service by one of c servers while a Type 2 customer may be served by a Type 1 customer who is available to act as a server soon after getting a service or by one of c servers. We assume that a Type 1 customer will be available for serving a Type 2 customer (provided there is at least one Type 2 customer waiting in the queue at the time of the service completion of that Type 1 customer) with probability \(p, 0 \le p \le 1\). With probability \(q = 1 - p\), a Type 1 customer will opt out of serving a Type 2 customer provided there is at least one Type 2 customer waiting in the system. Upon completion of a service a free server will offer service to a Type 1 customer on an FCFS basis; however, if there are no Type 1 customers waiting in the system, the server will serve a Type 2 customer if there is one present in the queue. If a Type 1 customer decides to serve a Type 2 customer, for our analysis purposes that Type 2 customer will be removed from the system as Type 1 customer will leave the system with that Type 2 customer. Under the assumption of exponential services for both types of customers we study the model in steady state using matrix analytic methods and establish some results including explicit ones for the waiting time distributions. Some illustrative numerical examples are presented.  相似文献   

13.
We study a tandem queueing system with K servers and no waiting space in between. A customer needs service from one server but can leave the system only if all down-stream servers are unoccupied. Such a system is often observed in toll collection during rush hours in transportation networks, and we call it a tollbooth tandem queue. We apply matrix-analytic methods to study this queueing system, and obtain explicit results for various performance measures. Using these results, we can efficiently compute the mean and variance of the queue lengths, waiting time, sojourn time, and departure delays. Numerical examples are presented to gain insights into the performance and design of the tollbooth tandem queue. In particular, it reveals that the intuitive result of arranging servers in decreasing order of service speed (i.e., arrange faster servers at downstream stations) is not always optimal for minimizing the mean queue length or mean waiting time.  相似文献   

14.
The idea of G-networks with negative arrivals, as well as of the relevant product form solution including non-linear traffic equations, was first published by Erol Gelenbe in 1989. In contrast to classical queues and queueing networks, the arrivals of negative customers which remove customers from a non-empty queue upon their arrival are possible in G-networks. Negative customers with appropriate killing discipline can be used to model breakdowns and to model packet losses, etc., while triggered customer movement can represent control processes in networks. This work presents a bibliography1 on G-networks, negative customers and the use of G-networks, negative customers and triggers to various performance analysis problems. We hope that we can include a majority of publications on G-networks. This bibliography in the BibTex format and a grouping by various themes is available online from http://www.hit.bme.hu/~do/G-networks/. We would encourage readers and researchers to send information to the author in order to make this bibliography as complete as possible.  相似文献   

15.
In this paper we study queueing systems with customer interjections. Customers are distinguished into normal customers and interjecting customers. All customers join a single queue waiting for service. A normal customer joins the queue at the end and an interjecting customer tries to cut in the queue. The waiting times of normal customers and interjecting customers are studied. Two parameters are introduced to describe the interjection behavior: the percentage of customers interjecting and the tolerance level of interjection by individual customers. The relationship between the two parameters and the mean and variance of waiting times is characterized analytically and numerically.  相似文献   

16.
In many real-life queueing systems, a customer may balk upon arrival at a queueing system, but other customers become aware of it only at the time the balking customer was to start service. Naturally, the balking is an outcome of the queue length, and the decision is based on a threshold. Yet the inspected queue length contains customers who balked. In this work, we consider a Markovian queue with infinite capacity and with customers that are homogeneous with respect to their cost reward functions. We show that that no threshold strategy can be a Nash equilibrium strategy. Furthermore, we show that for any threshold strategy adopted by all, the individual’s best response is a double threshold strategy. That is, join if and only if one of the following is true: (i) the inspected queue length is smaller than one threshold, or (ii) the inspected queue length is larger than a second threshold. Our model is under the assumption that the response time of the server when he finds out that a customer balked is negligible. We also discuss the validity of the result when the response time is not negligible.  相似文献   

17.
In this paper we consider a single-server, cyclic polling system with switch-over times and Poisson arrivals. The service disciplines that are discussed, are exhaustive and gated service. The novel contribution of the present paper is that we consider the reneging of customers at polling instants. In more detail, whenever the server starts or ends a visit to a queue, some of the customers waiting in each queue leave the system before having received service. The probability that a certain customer leaves the queue, depends on the queue in which the customer is waiting, and on the location of the server. We show that this system can be analysed by introducing customer subtypes, depending on their arrival periods, and keeping track of the moment when they abandon the system. In order to determine waiting time distributions, we regard the system as a polling model with varying arrival rates, and apply a generalised version of the distributional form of Little??s law. The marginal queue length distribution can be found by conditioning on the state of the system (position of the server, and whether it is serving or switching).  相似文献   

18.
Queueing networks with negative customers (G-networks), Poisson flow of positive customers, multi-server exponential nodes, and dependent service at the different nodes are studied. Every customer arriving at the network is defined by a set of random parameters: customer route, the length of customer route, customer volume and his service time at each route stage as well. A killed positive customer is removed at the last place in the queue and quits the network just after his remaining service time will be elaborated. For such G-networks, the multidimensional stationary distribution of the network state probabilities is shown to be representable in product form.  相似文献   

19.
We study a single server queue with batch arrivals and general (arbitrary) service time distribution. The server provides service to customers, one by one, on a first come, first served basis. Just after completion of his service, a customer may leave the system or may opt to repeat his service, in which case this customer rejoins the queue. Further, just after completion of a customer's service the server may take a vacation of random length or may opt to continue staying in the system to serve the next customer. We obtain steady state results in explicit and closed form in terms of the probability generating functions for the number of customers in the queue, the average number of customers and the average waiting time in the queue. Some special cases of interest are discussed and some known results have been derived. A numerical illustration is provided.  相似文献   

20.
This paper deals with a generalized M/G/1 feedback queue in which customers are either “positive" or “negative". We assume that the service time distribution of a positive customer who initiates a busy period is G e (x) and all subsequent positive customers in the same busy period have service time drawn independently from the distribution G b (x). The server is idle until a random number N of positive customers accumulate in the queue. Following the arrival of the N-th positive customer, the server serves exhaustively the positive customers in the queue and then a new idle period commences. This queueing system is a generalization of the conventional N-policy queue with N a constant number. Explicit expressions for the probability generating function and mean of the system size of positive customers are obtained under steady-state condition. Various vacation models are discussed as special cases. The effects of various parameters on the mean system size and the probability that the system is empty are also analysed numerically. AMS Subject Classification: Primary: 60 K 25 · Secondary: 60 K 20, 90 B 22  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号