首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Explicit time differencing methods for solving differential equations are advantageous in that they are easy to implement on a computer and are intrinsically very parallel. The disadvantage of explicit methods is the severe restrictions that are placed on stable time-step intervals. Stability bounds for explicit time differencing methods on advective–diffusive problems are generally determined by the diffusive part of the problem. These bounds are very small and implicit methods are used instead. The linear systems arising from these implicit methods are generally solved by iterative methods. In this article we develop a methodology for increasing the stability bounds of standard explicit finite differencing methods by combining explicit methods, implicit methods, and iterative methods in a novel way to generate new time-difference schemes, called preconditioned time-difference methods. A Jacobi preconditioned time differencing method is defined and analyzed for both diffusion and advection–diffusion equations. Several computational examples of both linear and nonlinear advective-diffusive problems are solved to demonstrate the accuracy and improved stability limits. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Parallelizations of various different methods for determining the roots of a polynomial are discussed. These include methods which locate a single root only as well as those which find all roots. Some techniques for parallelizing such methods are identified and some examples are given. Further places in polynomial root-finding algorithms where parallel behaviour can be introduced are described. Results are presented for a range of programs written to test the effectiveness of methods presented here.  相似文献   

3.
本文研究时滞积分微分方程的数值方法.通过改造现有常及离散型延迟微分方程的数值方法,并匹配以适当数值求积公式,构造了求解时滞积分微分方程的Rosenbrock方法,导出了其稳定性准则.数值例子阐明了所获方法的计算有效性.  相似文献   

4.
In this paper, we present two composite Milstein methods for the strong solution of Stratonovich stochastic differential equations driven by d-dimensional Wiener processes. The composite Milstein methods are a combination of semi-implicit and implicit Milstein methods. The criterion for choosing either the implicit or the semi-implicit method at each step of the numerical solution is given. The stability and convergence properties of the proposed methods are analyzed for the linear test equation. It is shown that the proposed methods converge to the exact solution in Stratonovich sense. In addition, the stability properties of our methods are found to be superior to those of the Milstein and the composite Euler methods. The convergence properties for the nonlinear case are shown numerically to be the same as the linear case. Hence, the proposed methods are a good candidate for the solution of stiff SDEs.  相似文献   

5.
We provide a semilocal convergence analysis for certain modified Newton methods for solving equations containing a non-differentiable term. The sufficient convergence conditions of the corresponding Newton methods are often taken as the sufficient conditions for the modified Newton methods. That is why the latter methods are not usually treated separately from the former. However, here we show that weaker conditions, as well as a finer error analysis than before can be obtained for the convergence of modified Newton methods. Numerical examples are also provided.  相似文献   

6.
Currently, prenatal screening for Down Syndrome (DS) uses the mother's age as well as three biochemical markers for risk prediction. Risk calculations for the biochemical markers use a quadratic discriminant function. In this paper we compare several classification procedures to quadratic discrimination methods for biochemical-based DS risk prediction, based on data from a prospective multicentre prenatal screening study. We investigate alternative methods including linear discriminant methods, logistic regression methods, neural network methods, and classification and regression-tree methods. Several experiments are performed, and in each experiment resampling methods are used to create training and testing data sets. The procedures on the test data set are summarized by the area under their receiver operating characteristic curves. In each experiment this process is repeated 500 times and then the classification procedures are compared. We find that several methods are superior to the currently used quadratic discriminant method for risk estimation for these data. The implications of these results for prenatal screening programs are discussed.  相似文献   

7.
本文研究多组变量相关分析SSQCOR.准则的数值方法.从KKT条件出发引入了Gauss-Seidel型方法,从SSQCOR出发引入了交替变量法.证明了前者是后者的非精确形式,都具有单调上升性.为了提高得到全局解的可能性,引入了初始点策略.用实际数据和模拟数据进行了数值试验以说明算法的有效性.  相似文献   

8.
By means of error-bounds for the well-known hyperpower methods for approximating the inverse of a matrix we define inclusion methods for the inverse matrix. These methods are using machine interval operations and are giving guaranteed inclusions for the inverse matrix whenever the convergence of the applied hyperpower methods can be shown. In comparison with the very efficient interval Schulz's method in the literature, our methods are more efficient in terms of the efficiency index. Some numerical examples are given.  相似文献   

9.
Numerical methods for radiative heat transfer equations coupled to a temperature equation are considered. Efficient solution methods and approximate equations for this system are investigated and a comparative numerical study of the different approximations is given. The approximate equations considered in this paper include moment methods and diffusive approximations. Fast iterative solvers for the problem like multilevel methods with suitable preconditioning are considered in detail. Numerical experiments and comparisons in different space dimensions and for various physical situations are presented.  相似文献   

10.
Deeper investigation of time discretization for free surface problems is a widely neglected problem. Many existing approaches use an explicit decoupling which is only conditionally stable. Only few unconditionally stable methods are known, and known methods may suffer from too strong numerical dissipativity. They are also usually of first rder only [1, 9]. We are therefore looking for unconditionally stable, minimally dissipative methods of higher order. Linearly implicit Runge-Kutta (LIRK) methods are a class of one-step methods that require the solution of linear systems in each time step of a nonlinear system. They are well suited for discretized PDEs, e.g. parabolic problems [7]. They have been used successfully to solve the incompressible Navier-Stokes equations [5]. We suggest an adaption of these methods for free surface problems and compare different approximations to the Jacobian matrix needed for such methods. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Dual interior point methods for solving linear semidefinite programming problems are proposed. These methods are an extension of dual barrier-projection methods for linear programs. It is shown that the proposed methods converge locally at a linear rate provided that the solutions to the primal and dual problems are nondegenerate.  相似文献   

12.
Contractivity is a desirable property of numerical integration methods for stiff systems of ordinary differential equations. In this paper, numerical parameters are used to allow a direct and quantitative comparison of the contractivity properties of various methods for non-linear stiff problems. Results are provided for popular Rosenbrock methods and some more recently developed semi-implicit methods.  相似文献   

13.
Stability properties of numerical methods for delay differential equations are considered. Some suitable definitions for the stability of the numerical methods are included and Runge-Kutta type methods satisfying these properties are tested on a numerical example.  相似文献   

14.
The construction of a class of three-point methods for solving nonlinear equations of the eighth order is presented. These methods are developed by combining fourth order methods from the class of optimal two-point methods and a modified Newton’s method in the third step, obtained by a suitable approximation of the first derivative based on interpolation by a nonlinear fraction. It is proved that the new three-step methods reach the eighth order of convergence using only four function evaluations, which supports the Kung-Traub conjecture on the optimal order of convergence. Numerical examples for the selected special cases of two-step methods are given to demonstrate very fast convergence and a high computational efficiency of the proposed multipoint methods. Some computational aspects and the comparison with existing methods are also included.  相似文献   

15.
In this paper a family of fully implicit Milstein methods are introduced for solving stiff stochastic differential equations (SDEs). It is proved that the methods are convergent with strong order 1.0 for a class of SDEs. For a linear scalar test equation with multiplicative noise terms, mean-square and almost sure asymptotic stability of the methods are also investigated. We combine analytical and numerical techniques to get insights into the stability properties. The fully implicit methods are shown to be superior to those of the corresponding semi-implicit methods in term of stability property. Finally, numerical results are reported to illustrate the convergence and stability results.  相似文献   

16.
This study was suggested by previous work on the simulation of evolution equations with scale-dependent processes,e.g.,wave-propagation or heat-transfer,that are modeled by wave equations or heat equations.Here,we study both parabolic and hyperbolic equations.We focus on ADI (alternating direction implicit) methods and LOD (locally one-dimensional) methods,which are standard splitting methods of lower order,e.g.second-order.Our aim is to develop higher-order ADI methods,which are performed by Richardson extrapolation,Crank-Nicolson methods and higher-order LOD methods,based on locally higher-order methods.We discuss the new theoretical results of the stability and consistency of the ADI methods.The main idea is to apply a higher- order time discretization and combine it with the ADI methods.We also discuss the dis- cretization and splitting methods for first-order and second-order evolution equations. The stability analysis is given for the ADI method for first-order time derivatives and for the LOD (locally one-dimensional) methods for second-order time derivatives.The higher-order methods are unconditionally stable.Some numerical experiments verify our results.  相似文献   

17.
In this paper we discuss two-stage diagonally implicit stochastic Runge-Kutta methods with strong order 1.0 for strong solutions of Stratonovich stochastic differential equations. Five stochastic Runge-Kutta methods are presented in this paper. They are an explicit method with a large MS-stability region, a semi-implicit method with minimum principal error coefficients, a semi-implicit method with a large MS-stability region, an implicit method with minimum principal error coefficients and another implicit method. We also consider composite stochastic Runge-Kutta methods which are the combination of semi-implicit Runge-Kutta methods and implicit Runge-Kutta methods. Two composite methods are presented in this paper. Numerical results are reported to compare the convergence properties and stability properties of these stochastic Runge-Kutta methods.  相似文献   

18.
《Optimization》2012,61(4):993-1009
Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed.  相似文献   

19.
In this paper inverse linear multistep methods for the numerical solution of second order differential equations are presented. Local accuracy and stability of the methods are defined and discussed. The methods are applicable to a class of special second order initial value problems, not explicitly involving the first derivative. The methods are not convergent, but yield good numerical results if applied to problems they are designed for. Numerical results are presented for both the linear and nonlinear initial value problems.  相似文献   

20.
The article considers symmetric general linear methods, a class of numerical time integration methods which, like symmetric Runge–Kutta methods, are applicable to general time-reversible differential equations, not just those derived from separable second-order problems. A definition of time-reversal symmetry is formulated for general linear methods, and criteria are found for the methods to be free of linear parasitism. It is shown that symmetric parasitism-free methods cannot be explicit, but such a method of order 4 is constructed with only one implicit stage. Several characterizations of symmetry are given, and connections are made with G-symplecticity. Symmetric methods are shown to be of even order, a suitable symmetric starting method is constructed and shown to be essentially unique. The underlying one-step method is shown to be time-symmetric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号