首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approximate analysis is presented for the flow of fluids through planar and axisymmetric contractions. Energy principles are employed to relate the entry pressure drop to flow rate and fundamental rheometric properties. One of the aims of the analysis is to investigate the influence of extensional viscosity on such flows, particularly with regard to the occurrence and enhancement of vortex motion in the entry corners.For the sake of mathematical simplicity, independent power-law models are used to represent the shear and extensional viscosity functions. The analysis indicates that, once significant vortex motion is present, enhancement occurs whenever the Trouton ratio is an increasing function of shearrate (or stretch-rate). It is readily seen how the occurrence of vortices serves as a stress relief mechanism. Indeed, for highly stretch-thickening materials, the entry pressure drop is seen to be dominated by shear properties.The power-law parameters of the extensional viscosity function may be obtained in a straight-forward way from entry pressure drop versus flow rate data.Finally, the extension and application of the analysis to other similar flows, such as through converging nozzles, is briefly discussed.  相似文献   

2.
In this paper, we have analyzed the Jeffrey fluid with pressure‐dependent viscosity. The equations of Jeffrey fluid model have been modelled when viscosity is a function of pressure. Two types of flow problem, namely, Poiseulle flow and Couette flow have been solved numerically for Jeffrey fluid. The velocity field for different physical parameters has been discussed through graphs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Exact solutions are given for flows of power-law fluids, with heat generation and temperature dependent viscosity, in three situations, namely pressure flow through a circular tube, shear flow between rotating concentric cylinders and shear flow between parallel plates. The application of the results to the experimental determination of the material parameters is discussed and it is shown that the method usually adopted in practice, does in fact lead to accurate estimates.  相似文献   

4.
Heterogeneous water-air mixture flows in the presence of capillary forces are investigated. It is shown that for moderate pressure and temperature gradients the distribution of the water saturation function can be determined from a nonlinear differential equation with a coefficient dependent on the porous medium parameters, the water viscosity, and the capillary pressure. The water-air mixture flow behind the ice melting front is considered.  相似文献   

5.
This paper presents a two-dimensional SPH model designed to simulate free-surface flows of dense granular materials. Smoothed particle hydrodynamics (SPH) is a mesh-free numerical method based on a Lagrangian discretization of the continuum mass and momentum conservation equations. The rheology of dense granular materials is modelled using a new local constitutive law recently proposed by Jop et al. (Nature, 2006). Of the viscoplastic class, this law is characterized by an apparent viscosity depending both on the local strain rate and local pressure. Validation test cases of the model in steady and unsteady configurations are presented. For steady cases (vertical chute flow and uniform free-surface layers on inclines), excellent agreement with analytical predictions is obtained. In the unsteady case, the simulations satisfactorily capture the dynamics of gravity-driven surges observed in experiments, including behaviours that are very specific to granular materials. Among the various parameters involved in the computations, the influence of SPH particle configuration within the flow and of the threshold viscosity used in the regularization of the constitutive yield criterion are particularly discussed.  相似文献   

6.
We consider generalized one-dimensional Maxwell and Kelvin-Voigt models of viscoelastic materials in which the properties of elastic and viscous elements are determined by the corresponding secant moduli and viscosity coefficients, which are functions of the parameters determined by the deformation process. In contrast to the nonlinear endochronic theory of aging viscoelastic materials (NETAVEM), in which one and the same aging function is used to describe the properties of all elastic elements and one and the same viscosity function is used to describe the properties of all viscous elements [1, 2], it is assumed that the type of these functions is distinct for each elementary model. For the generalized Maxwell and Kelvin-Voigt models under study, we obtain representations of the specific work of internal forces as the sum of four terms of different physical meaning. There representations are similar to those given in [1, 2] for NETAVEM. An example of construction of viscoelasticity constitutive relations containing two aging functions and one viscosity function is given for a material whose properties are sensitive to the strain rate. The simultaneous use of several aging and viscosity functions to describe the properties of structure elements of the model and the use of several components of specific work as arguments of these functions allows us to extend the scope of the models under study.  相似文献   

7.
The effect of pressure on viscosity is an important but often overlooked aspect of the flow properties of polymeric materials. In this work, two polymers (an atactic and a syndiotactic Polystyrene) were characterized to determine the effect of pressure on viscosity. In particular, a device was adopted to increase the exit pressure of a standard capillary rheometer, thus obtaining data of viscosity under high pressure and high shear rates. The Simha-Somcynsky equation of state was applied to the pressure–volume–temperature experimental data of both materials to obtain the dependence of free volume on temperature and pressure. The Doolittle equation was eventually employed to verify the dependence of viscosity on free volume. It was found that, for both materials, a linear relationship holds between the logarithm of zero-shear-rate viscosity (at several temperatures and pressures) and the inverse of free volume.  相似文献   

8.
A pressure‐driven flow of elongated bullet‐shaped bubbles in a narrow channel is known as Taylor flow or bubble‐train flow. This process is of relevance in various applications of chemical engineering. In this paper, we describe a typical simplified experimental setting, with surface tension, density and viscosity as prescribed input parameters. We compare a sharp‐interface model based on a moving grid aligned with the bubble boundary (ALE coordinates) and a diffuse‐interface model where the bubble shape is implicitly given by a phase‐field function. Four independent implementations based on the two modeling approaches are introduced and described briefly. Besides the simulation of the bubble shapes, we compare some resulting quantities such as pressure difference and film widths within the implementations and to existing analytical and experimental results. The simulations were conducted in 2D and 3D (rotationally symmetric). Good accordance of the results indicate the applicability and the usability of all approaches. Differences between the models and their implementations are visible but in no contradiction to theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The paper proposes a model for a cold rolling mill process in the full-film regime that uses lubricant emulsion sprayed on at the entrance of the strip. The aim of the model is to forecast the reduction of strip thickness versus the flow rate of lubricant given the other operation parameters. The model includes strip plastic deformation, lubricant flow and lubricant viscosity depending on pressure. The mathematical problem is a free boundary one and a numerical procedure, applied to an industrial plant, is presented with some results.  相似文献   

10.
The present paper deals with a flow of a viscous incompressible fluid along a heated vertical cone, with due allowance for variations of viscosity and thermal diffusivity with temperature. The fluid viscosity is assumed to be an exponential function of temperature, and the thermal diffusivity is assumed to be a linear function of temperature. The governing equations for laminar free convection of the fluid are transformed into dimensionless partial differential equations, which are solved by a finite difference method with the Crank–Nicolson implicit scheme. Dependences of the flow parameters on the fluid viscosity and thermal conductivity are obtained.  相似文献   

11.
A fluid flow through an isotropic porous medium with randomly arranged elliptical particles is simulated by the lattice Boltzmann method. The dimensionless pressure drop and the dimensionless permeability are evaluated as functions of the Reynolds number. The effect of the aspect ratio of the major to minor semi-axis of the ellipse on the dimensionless permeability is considered for different values of porosity. The pressure drop is thoroughly investigated as a function of fluid viscosity for different values of the aspect ratio and porosity. The influence of various parameters of the problem on the mean tortuosity of the medium is considered.  相似文献   

12.
Lorenzo Fusi 《Meccanica》2017,52(15):3577-3592
In this paper we investigate the non-isothermal flow of a Bingham fluid whose viscosity and yield stress depend on temperature and pressure. We consider two situations: in the first one we assume that the buoyancy effects are dominant and influence the development and evolution of the unyielded plug. In this case the governing equations are obtained via the Oberbeck–Boussinesq approximation which is derived using a perturbative approach. We show that within this approximation the heat generated by viscous friction can be safely neglected. In the second situation we assume that the frictional heating effects are dominant and influence the flow via the viscosity and yield stress that depend on temperature. For both situations we investigate the simple unidirectional flow between plates subjected to given thermal conditions. We derive the equations for the steady fully developed flow and we determine the exact position of the yield surfaces separating the yielded and the unyielded domain. We also show some plots to assess the effects due to the dependence of the rheological parameters on the temperature and pressure.  相似文献   

13.
The aeration of emulsions with tailored properties and structure is of widespread importance in processing of foods and cosmetics. This report addresses the micro-cellular foam formation of carbon dioxide-saturated oil-in-water emulsions triggered by the application of a controlled pressure drop. The experimental setup combines a stirred pressure vessel with a pressure cell-equipped rheometer and pneumatic expansion valves. This allows to systematically study the process of gas dissolution, bubble nucleation, and growth under defined pressure, temperature, and flow conditions. Investigations on the impact of relevant process parameters show that dissolved gas fraction, emulsion viscosity, and shear rate have a major influence on foam formation. Dissolution of carbon dioxide leads to a viscosity reduction of the emulsion which and is described by a viscosity reduction factor. The point of bubble nucleation is derived from rheological patterns during depressurization. Experiments show that lower emulsion viscosity and higher shear rate favor bubble nucleation upon pressure release. Rheological results are supported by video analysis as the setup allows capturing nucleation, growth, and destabilization of bubbles as a function of pressure, supersaturation, and time. The results of this work yield the understanding of the high-pressure foaming mechanism from a rheological perspective and foster the design of such processes.  相似文献   

14.
In this paper, we consider how a model for the motion with exponential viscosity of a third-grade fluid flowing between parallel plates, under the action of externally imposed pressure gradient, affects the fully developed and laminar reactive flow. The non-dimensional form of the coupled equations are solved numerically. The temperature distribution is presented for various viscosity variational parameters and the number is related to the Frank-Kamenetskii parameter. The criticality and disappearance of criticality (transition) of physical parameters and the competing effects of viscous dissipation, viscosity variational number, heat generation and non-Newtonian are discussed.  相似文献   

15.
An isothermal steady rarefied gas flow in a long channel (tube) of elliptical or rectangular cross-section under the action of a given pressure gradient (Poiseuille flow) is studied on the basis of the Bhatnagar-Gross-Krook model. The solution is obtained using a conservative higher-order method. The velocity field in a channel cross-section is investigated as a function of the rarefaction degree and the cross-section geometry parameters. The main calculated function is the gas flow rate through the tube. The solutions obtained are compared with the available results.  相似文献   

16.
The flow of a third-grade fluid in a pipe with heat transfer is considered. Constant viscosity, Reynold's model viscosity and Vogel's model viscosity cases are treated separately. Approximate analytical solutions are presented for each case using perturbations. The criteria for which the solutions are valid are determined for the dimensionless parameters involved. The analytical solutions are contrasted with the finite difference solutions given in Massoudi and Christie (Int. J. Non-Linear Mech. 30 (1995) 687-699) and within admissible parameter range, a close match is achieved.  相似文献   

17.
The rheological behavior of two flexible thermoplastics, Nylon-6 (Ny) and bisphenol-A polysulfone (PSu), and two wholly aromatic liquid crystalline polymers, Vectra-A900 (VA) and Vectra-B950 (VB), as well as that of Ny/VB and PSu/VA blends with 10% LCP, has been investigated by the use of capillary viscometers equipped with cylindrical dies having different length-to-diameter ratios. The elongational viscosity of all materials was calculated, from the results of isothermal measurements carried out at 290°C, by means of the Cogswell's analysis, based on the estimation of the pressure drop due to the converging flow at the die inlet. The behavior in elongational flow was compared with the rheological behavior in shear flow conditions. It was found that the elongational viscosities of VA and VB are very large and account for a fairly marked pressure drop at the die entrance, due to the orientation of the LCP domains taking place in the converging flow zone. For these materials, the ratio of the elongational viscosity to the Newtonian shear viscosity is up to two orders of magnitude higher than the value expected on the basis of the Trouton rule. For the flexible resins, the Trouton ratio is 3 and ca. 3–10, are common values for high molar mass linear polymers. The addition of 10% LCP into the flexible resins strongly increases their elongational viscosity and makes the blends resemble neat LCPs in their extensional flow behavior. In shear flow, on the contrary, the addition of LCP was shown to induce a marked reduction of the melt viscosity, even when, as for the Ny/VB blend, the LCP is more viscous than the matrix.  相似文献   

18.
This work reports on fluid flow in a fluid-saturated porous medium, accounting for the boundary and inertial effects in the momentum equation. The flow is simulated by Brinkman-Forchheimer-extended Darcy formulation (DFB), using MAC (Marker And Cell) and Chorin pressure iteration method. The method is validated by comparison with analytic results. The effect of Reynolds number, Darcy number, porosity and viscosity ratio on velocity is investigated. As a result, it is found that Darcy number has a decisive influence on pressure as well as velocity, and the effect of viscosity ratio on velocity is very strong given the Darcy number. Additional key findings include unreasonable choice of effective viscosity can involve loss of important physical information.  相似文献   

19.
粘弹塑性材料动态裂纹尖端场   总被引:11,自引:1,他引:11  
王振清 《力学学报》1993,25(2):159-168
本文采用一种弹性/粘塑性模型,对扩展裂纹尖端应力应变场进行了渐近分析。文中假定,弹性阶段的粘性效应可以略去,仅在塑性应变中粘性才起作用。对这种模型,文中导出了一种率敏感型的本构关系。并进一步导出了裂纹尖端应力应变场的动力学方程。通过量级分析,给出了尖端场的应力应变奇异性指数。并且讨论了弹性,塑性及粘性三者的匹配条件。对Ⅲ型裂纹进行了具体的分析计算。对各个不同参数的选取进行了详细的分析,讨论了解的性质随各参数的变化规律。  相似文献   

20.
The analytical equations for calculating two-phase flow, including local capillary pressures, are developed for the bundle of parallel capillary tubes model. The flow equations that are derived were used to calculate dynamic immiscible displacements of oil by water under the constraint of a constant overall pressure drop across the tube bundle. Expressions for averaged fluid pressure gradients and total flow rates are developed, and relative permeabilities are calculated directly from the two-phase form of Darcy's law. The effects of pressure drop and viscosity ratio on the relative permeabilities are discussed. Capillary pressure as a function of water saturation was delineated for several cases and compared to a steady-state mercury-injection drainage type of capillary pressure profile. The bundle of serial tubes model (a model containing tubes whose diameters change randomly at periodic intervals along the direction of flow), including local Young-Laplace capillary pressures, was analyzed with respect to obtaining relative permeabilities and macroscopic capillary pressures. Relative permeabilities for the bundle of parallel tubes model were seen to be significantly affected by altering the overall pressure drop and the viscosity ratio; relative permeabilities for the bundle of serial tubes were seen to be relatively insensitive to viscosity ratio and pressure, and were consistently X-like in profile. This work also considers the standard Leverett (1941) type of capillary pressure versus saturation profile, where drainage of a wetting phase is completed in a step-wise steady fashion; it was delineated for both tube bundle models. Although the expected increase in capillary pressure at low wetting-phase saturation was produced, comparison of the primary-drainage capillary pressure curves with the pseudo-capillary pressure profiles, that are computed directly using the averaged pressures during the displacements, revealed inconsistencies between the two definitions of capillary pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号