首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stochastic uncapacitated single allocation p-hub center problem is an extension of the deterministic version which aims to minimize the longest origin-destination path in a hub and spoke network. Considering the stochastic nature of travel times on links is important when designing a network to guarantee the quality of service measured by a maximum delivery time for a proportion of all deliveries. We propose an efficient reformulation for a stochastic p-hub center problem and develop exact solution approaches based on variable reduction and a separation algorithm. We report numerical results to show effectiveness of our new reformulations and approaches by finding global solutions of small-medium sized problems. The combination of model reformulation and a separation algorithm is particularly noteworthy in terms of computational speed.  相似文献   

2.
This paper deals with the Uncapacitated Single Allocation p-Hub Median Problem (USApHMP). Two genetic algorithm (GA) approaches are proposed for solving this NP-hard problem. New encoding schemes are implemented with appropriate objective functions. Both approaches keep the feasibility of individuals by using specific representation and modified genetic operators. The numerical experiments were carried out on the standard ORLIB hub data set. Both methods proved to be robust and efficient in solving USApHMP with up to 200 nodes and 20 hubs. The second GA approach achieves all previously known optimal solutions and achieves the best-known solutions on large-scale instances.  相似文献   

3.
4.
5.
In this paper we review the integer linear formulations of the uncapacitated multiple allocation hub location problem, we study the scope of validity of these formulations and give new ones that generalize the older formulations. Our formulations allow one or two visits to hubs and include a more general cost structure that needs not satisfy the triangle inequality. We prove that the constraints defined by cliques of a related (intersection) graph are tighter constraints than the classical ones. We also discuss a pre-processing of the problem, which is very useful for reducing its size. Finally, we check the strength of the new formulations and compare them with others in the literature by solving instances of two commonly used data sets: the CAB (Civil Aeronautics Board) and AP (Australian Post), and also randomly generated instances. Our computational results clearly show that our formulations outperform all others previously used for small and medium problems.  相似文献   

6.
7.
We consider a generalization of the classic uncapacitated facility location problem (UFLP) in which customers require multiple products. We call this the multiproduct uncapacitated facility location problem (MUFLP). In MUFLP, in addition to a fixed cost for opening a facility, a fixed cost is incurred for each product that a facility is equipped to handle. Also, an assignment cost is incurred for satisfying a customer's requirement for a particular product at a chosen facility. We describe a branch-and-bound algorithm for MUFLP. Lower bounds are obtained by solving a UFLP subproblem for each product using a dual ascent routine. We also describe a heuristic branch-and-bound procedure in which the solutions to the subproblems at a given node might not generate a true lower bound. To generate a feasible solution, a ‘superposition’ heuristic based on solving UFLP subproblems for each product, as well as a ‘drop’ heuristic that eliminates facilities and equipment from the solution in a step-by-step manner, are given. Computational results are reported.  相似文献   

8.
We present a new general variable neighborhood search approach for the uncapacitated single allocation p-hub median problem in networks. This NP hard problem is concerned with locating hub facilities in order to minimize the traffic between all origin-destination pairs. We use three neighborhoods and efficiently update data structures for calculating new total flow in the network. In addition to the usual sequential strategy, a new nested strategy is proposed in designing a deterministic variable neighborhood descent local search. Our experimentation shows that general variable neighborhood search based heuristics outperform the best-known heuristics in terms of solution quality and computational effort. Moreover, we improve the best-known objective values for some large Australia Post and PlanetLab instances. Results with the new nested variable neighborhood descent show the best performance in solving very large test instances.  相似文献   

9.
This is a summary of the authors PhD thesis supervised by Daniele Vigo and defended on 30 March 2010, at the Università di Bologna. The thesis is written in English and is available from the author upon request. Several rich routing problems attaining to the transportation area have been studied. “Simple” algorithms have been proposed to solve them, both exact and heuristic, producing high quality solutions and transferrable methods.  相似文献   

10.
We present a multistart heuristic for the uncapacitated facility location problem, based on a very successful method we originally developed for the p-median problem. We show extensive empirical evidence to the effectiveness of our algorithm in practice. For most benchmarks instances in the literature, we obtain solutions that are either optimal or a fraction of a percentage point away from it. Even for pathological instances (created with the sole purpose of being hard to tackle), our algorithm can get very close to optimality if given enough time. It consistently outperforms other heuristics in the literature.  相似文献   

11.
This paper deals with the uncapacitated multiple allocation hub location problem. The dual problem of a four-indexed formulation is considered and a heuristic method, based on a dual-ascent technique, is designed. This heuristic, which is reinforced with several specifical subroutines and does not require any external linear problem solver, is the core tool embedded in an exact branch-and-bound framework. Besides, the heuristic provides the branch-and-bound algorithm with good lower bounds for the nodes of the branching tree. The results of the computational experience (with the classical CAB and AP data sets) are included, showing the great effectiveness of this approach: instances with up to 120 nodes are solved.  相似文献   

12.
We present in this paper, new resolution methods for the selective maintenance problem. This problem consists in finding the best choice of maintenance actions to be performed on a multicomponent system, so as to maximize the system reliability, within a time window of a limited duration. When the number of components of the system is important, this combinatorial problem is not easy to solve, in particular because of the nonlinear objective function modeling the system reliability. This problem did not receive much attention yet. Consequently, rare are the effective resolution methods that are offered to the user. We thus developed heuristics and an exact method based on a branch and bound procedure, which we apply to various system configurations. We compare the obtained results, and we evaluate the best method to be used in various situations.  相似文献   

13.
We consider the problem of partitioning a set of positive integers values into a given number of subsets, each having an associated cardinality limit, so that the maximum sum of values in a subset is minimized, and the number of values in each subset does not exceed the corresponding limit. The problem is related to scheduling and bin packing problems. We give combinatorial lower bounds, reduction criteria, constructive heuristics, a scatter search approach, and a lower bound based on column generation. The outcome of extensive computational experiments is presented.  相似文献   

14.
The uncapacitated multiple allocation p-hub center problem (UMApHCP) consists of choosing p hub locations from a set of nodes with pairwise traffic demands in order to route the traffic between the origin-destination pairs such that the maximum cost between origin-destination pairs is minimum. It is assumed that transportation between non-hub nodes is possible only via chosen hub nodes. In this paper we propose a basic variable neighborhood search (VNS) heuristic for solving this NP hard problem. In addition we apply two mathematical formulations of the UMApHCP in order to detect limitations of the current state-of-the-art solver used for this problem. The heuristics are tested on benchmark instances for p-hub problems. The obtained results reveal the superiority of the proposed basic VNS over the state-of-the-art as well as over a multi-start local search heuristic developed by us in this paper.  相似文献   

15.
Research in the domain of examination timetabling is moving towards developing methods that generalise well over a range of problems. This is achieved by implementing hyper-heuristic systems to find the best heuristic or heuristic combination to allocate examinations when constructing a timetable for a problem. Heuristic combinations usually take the form of a list of low-level heuristics that are applied sequentially. This study proposes an alternative representation for heuristic combinations, namely, a hierarchical combination of heuristics. Furthermore, the heuristics in each combination are applied simultaneously rather than sequentially. The study also introduces a new low-level heuristic, namely, highest cost. A set of heuristic combinations of this format have been tested on the 13 Carter benchmarks. The quality of the examination timetables induced using these combinations are comparable to, and in some cases better than, those produced by hyper-heuristic systems combining and applying heuristic combinations sequentially.  相似文献   

16.
This article deals with the uncapacitated multiple allocation p-hub median problem, where p facilities (hubs) must be located among n available sites in order to minimize the transportation cost of sending a product between all pairs of sites. Each path between an origin and a destination can traverse any pair of hubs.  相似文献   

17.
This work deals with the set cover with pairs problem (SCPP) which is a generalization of the set cover problem (SCP). In the SCPP the elements have to be covered by specific pairs of objects, instead of a single object. We propose a new mathematical formulation using extended variables that is capable of consistently solve instances with up to 500 elements and 500 objects. We also developed an ILS heuristic which was capable of finding better solutions for several tested instances in less computational time.  相似文献   

18.
We study the chance-constrained vehicle routing problem (CCVRP), a version of the vehicle routing problem (VRP) with stochastic demands, where a limit is imposed on the probability that each vehicle’s capacity is exceeded. A distinguishing feature of our proposed methodologies is that they allow correlation between random demands, whereas nearly all existing exact methods for the VRP with stochastic demands require independent demands. We first study an edge-based formulation for the CCVRP, in particular addressing the challenge of how to determine a lower bound on the number of vehicles required to serve a subset of customers. We then investigate the use of a branch-and-cut-and-price (BCP) algorithm. While BCP algorithms have been considered the state of the art in solving the deterministic VRP, few attempts have been made to extend this framework to the VRP with stochastic demands. In contrast to the deterministic VRP, we find that the pricing problem for the CCVRP problem is strongly \(\mathcal {NP}\)-hard, even when the routes being priced are allowed to have cycles. We therefore propose a further relaxation of the routes that enables pricing via dynamic programming. We also demonstrate how our proposed methodologies can be adapted to solve a distributionally robust CCVRP problem. Numerical results indicate that the proposed methods can solve instances of CCVRP having up to 55 vertices.  相似文献   

19.
Transiated fromIssledovaniya po Prikladnoi Matematike, No. 18, 1992, pp. 38–48.  相似文献   

20.
We propose a fuzzy model for the portfolio selection problem which takes into account the vagueness of the investor’s preferences regarding the assumed risk. We also describe an exact method for solving it as well as a hybrid meta-heuristic procedure which is more adequate for medium and large-sized problems or in cases in which a quick solution is needed. As an application, we solve several problems based on data from the IBEX35 index and the Spanish Stock Exchange Interconnection System.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号